1.Mechanism of Gegen Qinlian Decoction in treatment of ulcerative colitis through affecting bile acid synthesis.
Yi-Xuan SUN ; Jia-Li FAN ; Jing-Jing WU ; Li-Juan CHEN ; Jiang-Hua HE ; Wen-Juan XU ; Ling DONG
China Journal of Chinese Materia Medica 2025;50(10):2769-2777
Gegen Qinlian Decoction(GQD) is a classic prescription for the clinical treatment of ulcerative colitis(UC). This study, based on the differences in efficacy observed in UC mice under different level of bile acids treated with GQD, aims to clarify the impact of bile acids on UC and its therapeutic effects. It further investigates the expression of bile acid receptors in the liver of UC mice, and preliminarily reveals the mechanism through which GQD affects bile acid synthesis in the treatment of UC. A UC mouse model was established using dextran sulfate sodium(DSS) induction. The efficacy of GQD was evaluated by assessing the general condition, disease activity index(DAI) score, colon length, and histopathological changes in colon tissue via hematoxylin and eosin(HE) staining. ELISA and Western blot were used to evaluate the inflammatory response in colon tissue. The total bile acid(TBA) level and liver damage were quantified using an automatic biochemistry analyzer. The expression levels of bile acid receptors and bile acid synthetases in liver tissue were detected by Western blot and RT-qPCR. The results showed that compared with the model group, GQD treatment significantly improved the DAI score, colon shortening, and histopathological damage in UC mice. The levels of pro-inflammatory factors TNF-α and IL-6 in the colon were significantly reduced. Serum TBA levels were significantly decreased, while alkaline phosphatase(ALP) levels significantly increased. After administration of cholic acid(CA), UC symptoms in the CA + GQD group were significantly aggravated compared with the GQD group. The DAI score, degree of weight loss, colon injury, serum TBA, and liver injury markers all increased significantly. However, compared with the CA group, the CA + GQD group showed a marked reduction in TBA levels and a significant improvement in UC-related symptoms, indicating that GQD can alleviate UC damage exacerbated by CA. Further investigation into the expression of bile acid receptors and synthetases in the liver showed that under GQD treatment, the expression of farnesoid X receptor(FXR) and small heterodimer partner(SHP) significantly increased, while the expression of G protein-coupled receptor 5(TGR5) and cholesterol 7α-hydroxylase(Cyp7A1) significantly decreased. These findings suggest that GQD may affect bile acid receptors and synthetases, inhibiting bile acid synthesis through the FXR/SHP pathway to treat UC.
Animals
;
Colitis, Ulcerative/genetics*
;
Bile Acids and Salts/biosynthesis*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Male
;
Humans
;
Receptors, Cytoplasmic and Nuclear/metabolism*
;
Colon/metabolism*
;
Disease Models, Animal
;
Liver/metabolism*
;
Mice, Inbred C57BL
2.IFN-γ secretion in gut of Ob/Ob mice after vertical sleeve gastrectomy and its function in weight loss mechanism.
Jin-Peng DU ; Geng WANG ; Chao-Jie HU ; Qing-Bo WANG ; Hui-Qing LI ; Wen-Fang XIA ; Xiao-Ming SHUAI ; Kai-Xiong TAO ; Guo-Bin WANG ; Ze-Feng XIA
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):377-382
Vertical sleeve gastrectomy (VSG) is becoming more and more popular among the world. Despite its dramatic efficacy, however, the mechanism of VSG remains largely undetermined. This study aimed to test interferon (IFN)-γ secretion n of mesenteric lymph nodes in obese mice (ob/ob mice), a model of VSG, and its relationship with farnesoid X receptor (FXR) expression in the liver and small intestine, and to investigate the weight loss mechanism of VSG. The wild type (WT) mice and ob/ob mice were divided into four groups: A (WT+Sham), B (WT+VSG), C (ob/ob+Sham), and D (ob/ob+VSG). Body weight values were monitored. The IFN-γ expression in mesenteric lymph nodes of ob/ob mice pre- and post-operation was detected by flow cytometry (FCM). The FXR expression in the liver and small intestine was detected by Western blotting. The mouse AML-12 liver cells were stimulated with IFN-γ at different concentrations in vitro. The changes of FXR expression were also examined. The results showed that the body weight of ob/ob mice was significantly declined from (40.6±2.7) g to (27.5±3.8) g on the 30th day after VSG (P<0.05). At the same time, VSG induced a higher level secretion of IFN-γ in mesenteric lymph nodes of ob/ob mice than that pre-operation (P<0.05). The FXR expression levels in the liver and small intestine after VSG were respectively 0.97±0.07 and 0.84±0.07 fold of GAPDH, which were significantly higher than pre-operative levels of 0.50±0.06 and 0.48±0.06 respectively (P<0.05). After the stimulation of AML-12 liver cells in vitro by different concentrations of IFN-γ (0, 10, 25, 50, 100, and 200 ng/mL), the relative FXR expression levels were 0.22±0.04, 0.31±0.04, 0.39±0.05, 0.38±0.05, 0.56±0.06, and 0.35±0.05, respectively, suggesting IFN-γ could distinctly promote the FXR expression in a dose-dependent manner in comparison to those cells without IFN-γ stimulation (P<0.05). It was concluded that VSG induces a weight loss in ob/ob mice by increasing IFN-γ secretion of mesenteric lymph nodes, which then increases the FXR expression of the liver and small intestine.
Animals
;
Body Weight
;
Cell Line
;
Gastrectomy
;
methods
;
Gene Expression
;
Hepatocytes
;
cytology
;
drug effects
;
metabolism
;
Interferon-gamma
;
biosynthesis
;
pharmacology
;
secretion
;
Intestine, Small
;
drug effects
;
metabolism
;
Liver
;
drug effects
;
metabolism
;
Lymph Nodes
;
drug effects
;
metabolism
;
Mesentery
;
drug effects
;
metabolism
;
Mice
;
Mice, Obese
;
Obesity
;
metabolism
;
pathology
;
surgery
;
Receptors, Cytoplasmic and Nuclear
;
agonists
;
genetics
;
metabolism
;
Weight Loss
3.Effect of constitutive androstane receptor on the cytotoxicity of mitomycin C and 5-(aziridin-1-yl)-3-hydroxymethyl-1-methylindole-4,7-dione.
Jiang-hong ZHANG ; Fu-rong HAO ; Zhao-lu KONG ; Zhi-fen SHEN ; Yi-zun JIN
Acta Pharmaceutica Sinica 2007;42(4):371-375
This study is to evaluate the cytotoxicity of mitomycin C (MMC) and its analogue 5-(aziridin-1-yl)-3-hydroxymethyl-1-methylindole-4,7-dione (629) as well as the effect of transfection of constitutive androstane receptor (CAR) on their biological effects. HepG2 cells were transfected with the plasmids mCAR1/pCR3 mediated by liposome. Vector pCR3 was used as control. Transfected cells were screened by G418 resistance and limiting dilution. The expressions of plasmid mCAR1/pCR3 and CYP2B6 mRNA were detected by RT-PCR; Cytotoxicities of MMC and 629 in vitro were evaluated in g2car cells and HepG2 cells by MTT method under anaerobic and aerobic conditions. mRNA expression of CAR and CYP2B6 can not be detected in HepG2 cells and HepG2/pCR3 cells but can in g2car cells. It is shown that plasmid mCAR1/pCR3 was transfected into g2car cells successfully and target CYP2B6 was transactivated by CAR. To compare with aerobic and anaerobic, the cytotoxicities of MMC and 629 to HepG2 cells and g2car cells had significantly enhanced (P < 0.05), and transfect CAR gene can improve the cytotoxicity of MMC (P < 0.05), but not 629 (P > 0.05). Furthermore, CYP2B6 is one master enzyme for the metabolism of MMC and not 629. Transfection of CAR can increase expression of CYP2B6 mRNA in HepG2 cells, and can affect cytotoxicities of MMC and 629.
Antibiotics, Antineoplastic
;
pharmacology
;
Aryl Hydrocarbon Hydroxylases
;
biosynthesis
;
genetics
;
Aziridines
;
pharmacology
;
Carcinoma, Hepatocellular
;
metabolism
;
pathology
;
Cell Death
;
drug effects
;
Cell Hypoxia
;
Cell Line, Tumor
;
Cytochrome P-450 CYP2B6
;
Humans
;
Indoles
;
pharmacology
;
Inhibitory Concentration 50
;
Liver Neoplasms
;
metabolism
;
pathology
;
Mitomycin
;
pharmacology
;
Oxidoreductases, N-Demethylating
;
biosynthesis
;
genetics
;
Plasmids
;
RNA, Messenger
;
metabolism
;
Receptors, Cytoplasmic and Nuclear
;
biosynthesis
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Transcription Factors
;
biosynthesis
;
genetics
;
Transfection
4.Effect of Herba Epimedii flavone on the osteoblasts metabolism in vitro.
Yi-Heng LIU ; Hai-Ying ZHANG ; Hong-Min ZANG ; Jun-Chang CHENG
China Journal of Chinese Materia Medica 2006;31(6):487-490
OBJECTIVETo explore the effect of Herba Epimedii flavone (HEF) on the osteoblast metabolism in vitro.
METHODOsteoblast were obtained from new born rat calvaria by digestive enzymes. MTF, PNPP and RT-PCR were used to observe the proliferation, activity of ALP and mRNA expression of OPG and RANKL of cultured osteoblasts in vitro.
RESULTIt was found that HEF had the effect on stimulating cell proliferation, activity of ALP and the mRNA expression of OPG of cultured osteoblasts (P < 0.01, P < 0.05).
CONCLUSIONHEF can promote the proliferation, the differentiation and the expression of OPG mRNA of the osteoblasts cultured in vitro.
Alkaline Phosphatase ; metabolism ; Animals ; Animals, Newborn ; Carrier Proteins ; biosynthesis ; genetics ; Cell Proliferation ; drug effects ; Cells, Cultured ; Epimedium ; chemistry ; Flavones ; isolation & purification ; pharmacology ; Glycoproteins ; biosynthesis ; genetics ; Membrane Glycoproteins ; biosynthesis ; genetics ; Osteoblasts ; cytology ; metabolism ; Osteoprotegerin ; Plants, Medicinal ; chemistry ; RANK Ligand ; RNA, Messenger ; biosynthesis ; genetics ; Rats ; Rats, Sprague-Dawley ; Receptors, Cytoplasmic and Nuclear ; biosynthesis ; genetics ; Receptors, Tumor Necrosis Factor ; biosynthesis ; genetics
5.The induction of CYP3A regulated by pregnane X receptor and its significance in drug metabolism.
Yu-Guang WANG ; Sheng-Qi WANG ; Yue GAO
Acta Pharmaceutica Sinica 2006;41(1):1-6
Animals
;
Bridged Bicyclo Compounds
;
metabolism
;
Cytochrome P-450 CYP3A
;
biosynthesis
;
genetics
;
Drug Design
;
Drug Interactions
;
Enzyme Induction
;
Humans
;
Lithocholic Acid
;
metabolism
;
Phloroglucinol
;
analogs & derivatives
;
metabolism
;
Receptors, Cytoplasmic and Nuclear
;
genetics
;
metabolism
;
physiology
;
Receptors, Steroid
;
genetics
;
physiology
;
Signal Transduction
;
Terpenes
;
metabolism
;
Transcription Factors
;
genetics
;
metabolism
6.Effects of 1,25-dihydroxyvitamin D3 on the expressions of osteoprotegerin and receptor activator of NF-kappaB ligand in mouse osteoblasts.
Qing-xian TIAN ; Gong-yi HUANG
Acta Academiae Medicinae Sinicae 2004;26(4):418-422
OBJECTIVETo study the effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on the expression of osteoprotegerin (OPG) and receptor activator of NF-kappaB ligand (RANKL) mRNA in mouse osteoblasts.
METHODSCalvariae derived from CD-1 neonatal mouse (after born 24 h). Bone samples were processed by the collagenase/trypsin digestion method. Mouse osteoblasts were cultured in vitro. After 48 hours of addition of 1,25(OH)2D3 (0, 10(-8), 10(-9), 10(-11) mol/L) to the culture medium of mouse osteoblasts, the content of the OPG protein in culture medium was estimated with enzyme linked immunosorbent assay. Total RNA was prepared from mouse osteoblasts. mRNA expression of OPG and RANKL were detected by reverse transcription-polymerase chain reaction.
RESULTSThe mRNA expression of OPG in osteoblasts added with 1,25(OH)2D3 significantly decreased compared with the controls, which was markedly dose-dependent. OPG protein production in the medium decreased after treatment with 1,25(OH)2D3. In contrast, RANKL mRNA expression levels in osteoblasts significantly increased after 48 h of culture with 1,25(OH)2D3.
CONCLUSION1,25 (OH)2D3 can stimulate RANKL mRNA expression, but decrease OPG mRNA levels in vitro in mouse osteoblasts.
Animals ; Animals, Newborn ; Calcitriol ; pharmacology ; Carrier Proteins ; biosynthesis ; genetics ; Glycoproteins ; biosynthesis ; genetics ; physiology ; Ligands ; Membrane Glycoproteins ; biosynthesis ; genetics ; Mice ; NF-kappa B ; biosynthesis ; genetics ; Osteoclasts ; metabolism ; physiology ; Osteoprotegerin ; RANK Ligand ; RNA, Messenger ; biosynthesis ; genetics ; Receptor Activator of Nuclear Factor-kappa B ; Receptors, Cytoplasmic and Nuclear ; analysis ; biosynthesis ; genetics ; physiology ; Receptors, Tumor Necrosis Factor ; biosynthesis ; genetics ; Tumor Necrosis Factor-alpha ; biosynthesis ; genetics
7.Expression of type I inositol 1,4,5-triphosphate receptor on rat glomerular and afferent arterioles in a model of liver cirrhosis.
Jing-yan WANG ; Hong-yan LIU ; Pei LIU
Chinese Journal of Hepatology 2004;12(10):609-611
OBJECTIVETo study the expression of type I inositol 1,4,5-triphosphate receptor in rat glomerular and afferent arterioles in a model of liver cirrhosis and study the role of cross-membrane message transduction in the pathogenesis of hepatorenal syndrome.
METHODSIn a rat model of carbontetrachloride liver cirrhosis, the expression of type I inositol 1,4,5-triphosphate receptor (IP3R) on glomerular and afferent arterioles was measured by immunohistochemical method.
RESULTSIn the experimental group, 30 rats were used to make a model of liver cirrhosis. 11 rats survived during the experiment. The expression of type I IP3R on glomerular and afferent arterioles was 4.97+/-1.34 and 4.09+/-1.14 in the liver cirrhosis group, and it was 2.43+/-1.67 and 1.83+/-1.32 in the normal control rats. The differences between these two groups are statistically significant (t = 2.28, P = 0.0458).
CONCLUSIONExpression of type I IP3 receptor on rat glomerular and afferent arterioles in a model of liver cirrhosis indicated that the mechanism of cross-membrane message transduction plays a very important role in the pathogenesis of hepatorenal syndrome.
Animals ; Arterioles ; metabolism ; Calcium Channels ; biosynthesis ; genetics ; Carbon Tetrachloride ; Carbon Tetrachloride Poisoning ; Inositol 1,4,5-Trisphosphate Receptors ; Kidney ; metabolism ; Kidney Glomerulus ; blood supply ; metabolism ; Liver Cirrhosis, Experimental ; chemically induced ; complications ; metabolism ; Male ; Random Allocation ; Rats ; Rats, Wistar ; Receptors, Cytoplasmic and Nuclear ; biosynthesis ; genetics ; Renal Artery ; metabolism
8.Insulin-like growth factor-II and basic fibroblast growth factor affect periodontal ligament cells expressing osteoprotegerin in vitro.
West China Journal of Stomatology 2004;22(5):366-369
OBJECTIVEThis study was carried out to investigate the effects of insulin-like growth factor-II (IGF-II) and basic fibroblast growth factor (bFGF) on osteoprotegerin (OPG) secretion of periodontal ligament cells (PDLCs).
METHODSHealthy human premolars extracted for orthodontic reasons from 12-14 years old donators were obtained, and periodontal tissues were collected and cultured to obtain PDL cells. Primary or first passage PDLCs were cloned by means of limited dilutions. PDLCs with osteoblastic phenotypes were characterized as follows: Alkaline phosphatase activity, collagen III production and bone-like nodules formation. IGF-II and bFGF were added into culture media and their effects on PDLCs proliferation and OPG secretion were observed. The OPG concentrations in cell culture supernatants were detected by sandwich ELISA. Living cell numbers were demonstrated by MTT test. The average levels of OPG secretion by a single cell were calculated by dividing OPG concentration with MTT-test result.
RESULTSBoth IGF-II and bFGF upregulated the mtt values (P < 0.05), but ICF-II downregulated the opg/mtt values (P < 0.05), whereas bFGF had no significant effect on opg/mtt values (P > 0.05).
CONCLUSIONIGF-II enhances the proliferation of PDL cells but prohibits OPG secretion. Although bFGF has the same effect on the proliferation of PDL cells, it has no effect on OPG secretion. Before cytokines were used to enhance periodontal regeneration, their effects on local bone balance should also be studied.
Adolescent ; Cells, Cultured ; Child ; Fibroblast Growth Factor 2 ; pharmacology ; Glycoproteins ; biosynthesis ; Humans ; Insulin-Like Growth Factor II ; pharmacology ; Osteoprotegerin ; Periodontal Ligament ; cytology ; drug effects ; metabolism ; Receptors, Cytoplasmic and Nuclear ; biosynthesis ; Receptors, Tumor Necrosis Factor ; biosynthesis
9.Expression of human osteoprotegerin gene in E. Coli and bioactivity analysis of expression product.
Ji-zhong LIU ; Yun-yu HU ; Zong-ling JI ; Su-min CHEN
Chinese Journal of Surgery 2003;41(9):641-645
OBJECTIVETo express human osteoprotegerin (OPG) in E. Coli and analyze its bioactivity in vitro.
METHODSSynthetic oligonucleotides were used to amplify human OPG gene by RT-PCR from total RNA of human osteosarcoma cell line MG63. The OPG cDNA coding for 380 amino acid residues was inserted into prokaryotic expression vector pRSET-A, transformed into competent E. Coli BL21, and induced by 0.1 mmol/l IPTG. SDS-PAGE and Western blot were performed to identify OPG-6His fusion protein. After purified by affinity chromatography, 1,000 microg/L or 1,500 microg/L of OPG-6His were added into the mouse bone marrow cells culture medium. The number of tartrate-resistant acid phophatase (TRAP)-positive multinucleated cells and resorption pits were counted to assess the bioactivity of expression products.
RESULTSThe sequence of OPG mature peptide encoding cDNA obtained in this experiment was as same as reported. SDS-PAGE showed 24% of total bacterial protein was of OPG-6His fusion protein. Western blot assay demonstrated that the molecular weight of recombinant protein was about 46 KD and could react specifically with human anti-OPG antibody. The mouse bone marrow cells were induced by 1alpha, 25-dihydroxyvitaminD3 (10(-8) mol/L) and Dexamethasone (10(-7) mol/L) to form osteoclastic-like multinucleated cells. 1,500 microg/L of purified OPG-6His protein could decrease the number of resorption pits and TRAP-positive multinucleated cells in vitro (P < 0.05), but it didn't show the same effects when the concentration of OPG-6His fusion protein was of 1,000 microg/L.
CONCLUSIONSHuman OPG-6His fusion protein is expressed and purified in E. Coli. The expression products have moderate inhibitory effects on osteoclast differentiation and bone resorption in vitro only when excessive amount of proteins are added into the culture medium, indicating that prokaryotic expression of fuctionalal OPG protein awaits further investigation.
Cell Differentiation ; drug effects ; Cell Line, Tumor ; Cloning, Molecular ; Escherichia coli ; genetics ; Glycoproteins ; biosynthesis ; genetics ; Humans ; Osteoclasts ; drug effects ; physiology ; Osteoprotegerin ; Receptors, Cytoplasmic and Nuclear ; biosynthesis ; genetics ; Receptors, Tumor Necrosis Factor ; Recombinant Fusion Proteins ; biosynthesis ; pharmacology
10.Tumor necrosis factor and lipopolysaccharide affect periodontal ligament cells expressing osteoprotegerin in vitro.
Chinese Journal of Stomatology 2003;38(4):288-291
OBJECTIVETo investigate the effects of LPS and/or TNF-alpha on periodontal ligament cell (PDLC) proliferation and OPG secretion.
METHODSHealthy premolars extracted for orthodontic reasons from a 12 years old boy were obtained, and periodontal tissues were collected and cultured to obtain PDLCs. Cloned PDLCs were obtained by means of limited dilutions, and were characterized as follows: alkaline phosphatase activity, collagen III production and bone-like nodules formation. LPS and rhTNF-alpha were added into culture media and their effects on PDLC proliferation and OPG secretion were observed. The OPG concentrations in cell culture supernatants were detected by sandwich ELISA. Living cell numbers were demonstrated by MTT test. The average levels of OPG secretion by a single cell were calculated by dividing OPG concentration with MTT result.
RESULTSrhTNF-alpha above 10 micro g/L decreased the mtt and opg detecting results, but increased the opg/mtt values (P < 0.05). However, LPS had no effect on mtt, opg or opg/mtt values. Neither it had any interaction with rhTNF-alpha (P > 0.05).
CONCLUSIONSTNF-alpha prohibits the proliferation of PDLCs but enhances their OPG secretion. However, LPS has no effect on neither side. Our works support the hypothesis that there may be an inverse feedback regulation pattern of increasing periodontal OPG production against local bone resorption activity. PDLCs might not be the natural target cells of LPS' direct cytotoxic effect.
Child ; Glycoproteins ; biosynthesis ; drug effects ; Humans ; In Vitro Techniques ; Lipopolysaccharides ; pharmacology ; Male ; Osteoprotegerin ; Periodontal Ligament ; metabolism ; pathology ; Receptors, Cytoplasmic and Nuclear ; biosynthesis ; drug effects ; Receptors, Tumor Necrosis Factor ; biosynthesis ; drug effects ; Tumor Necrosis Factor-alpha ; pharmacology

Result Analysis
Print
Save
E-mail