1.The CXCL12 (SDF-1)/CXCR4 chemokine axis: Oncogenic properties, molecular targeting, and synthetic and natural product CXCR4 inhibitors for cancer therapy.
Yu ZHOU ; Han-Bo CAO ; Wen-Jun LI ; Li ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2018;16(11):801-810
Chemokine 12 (CXCL12), also known as stromal cell derived factor-1 (SDF-1) and a member of the CXC chemokine subfamily, is ubiquitously expressed in many tissues and cell types. It interacts specifically with the ligand for the transmembrane G protein-coupled receptors CXCR4 and CXCR7. The CXCL12/CXCR4 axis takes part in a series of physiological, biochemical, and pathological process, such as inflammation and leukocyte trafficking, cancer-induced bone pain, and postsurgical pain, and also is a key factor in the cross-talking between tumor cells and their microenvironment. Aberrant overexpression of CXCR4 is critical for tumor survival, proliferation, angiogenesis, homing and metastasis. In this review, we summarized the role of CXCL12/CXCR4 in cancer, CXCR4 inhibitors under clinical study, and natural product CXCR4 antagonists. In conclusion, the CXCL12/CXCR4 signaling is important for tumor development and targeting the pathway might represent an effective approach to developing novel therapy in cancer treatment.
Animals
;
Antineoplastic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Biological Products
;
chemistry
;
pharmacology
;
Chemokine CXCL12
;
genetics
;
metabolism
;
Humans
;
Molecular Targeted Therapy
;
Neoplasms
;
drug therapy
;
genetics
;
metabolism
;
Receptors, CXCR4
;
antagonists & inhibitors
;
genetics
;
metabolism
2.Exenatide promotes chemotactic migration of adipose-derived stem cells through SDF-1/CXCR-4/Rho GTPase pathway.
Qiang MA ; Jun-Jie YANG ; Hao ZHOU ; Ying ZHANG ; Yun-Dai CHEN
Journal of Southern Medical University 2016;36(8):1034-1040
OBJECTIVETo investigate the effect of exenatide on chemotactic migration of adipose-derived stem cells (ADSCs) and confirm that Rho GTPase is the downstream effector protein of SDF-1/CXCR-4 migration pathway.
METHODSADSCs were isolated, cultured, identified by flow cytometry, and induced to differentiate in vitro. RTCA xCELLigence system was used to analyze the effect of exenatide on ADSC proliferation. The effects of exenatide at different concentrations, AMD3100 (CXCR-4 antagonist), and CCG-1423 (Rho GTPase antagonist) on chemotactic migration of ADSCs were tested using Transwell assay. The expression of CXCR-4 in exenatide-treated ADSCs was measured by flow cytometry and Western blotting. Active Rho pull-down detection kit was used to detect the expression of Rho GTPase. Laser confocal microscopy was used to observe the formation of stress fibers in ADSCs with different treatments.
RESULTSExenatide treatment for 24 h had no significant effect on ADSC proliferation. Exenatide obviously promoted chemotactic migration of ADSCs in a concentration-dependent manner, and this effect was blocked by either AMD3100 or CCG-1423. Both flow cytometry and Western blotting showed that exenatide dose-dependently up-regulated CXCR-4 expression in ADSCs. Western blotting showed that the expression of Rho GTPase was related to SDF-1/CXCR-4 pathway, and laser confocal microscopy revealed that the formation of stress fibers in ADSCs was related to SDF-1/CXCR-4/ Rho GTPase pathway.
CONCLUSIONExenatide promotes chemotactic migration of ADSCs, and Rho GTPase is the downstream effector protein of SDF-1/CXCR-4 pathway.
Adipose Tissue ; cytology ; Anilides ; pharmacology ; Benzamides ; pharmacology ; Cells, Cultured ; Chemokine CXCL12 ; metabolism ; Chemotaxis ; Heterocyclic Compounds ; pharmacology ; Humans ; Peptides ; pharmacology ; Receptors, CXCR4 ; antagonists & inhibitors ; metabolism ; Signal Transduction ; Stem Cells ; cytology ; Venoms ; pharmacology ; rho GTP-Binding Proteins ; antagonists & inhibitors ; metabolism
3.Transforming growth factor-β1 induces bone marrow-derived mesenchymal stem cells to differentiate into cancer-associated fibroblasts.
Lei SHANGGUAN ; Email: SHANGGUANLEI@126.COM. ; Xiaojie LI ; Zhe WANG ; Zhuojing LUO
Chinese Journal of Oncology 2015;37(11):804-809
OBJECTIVETo investigate the effect of transforming growth factor-β1 (TGF-β1) on the differentiation of bone marrow-derived mesenchymal stem cells (MSCs) into cancer-associated fibroblasts(CAFs).
METHODSMSCs were cultured in α-MEM with recombinant human TGF-β1 or in tumor-conditioned medium.The expression of CAFs markers were detected by immunofluorescence and quantitative RT-PCR.
RESULTSThe qRT-PCR assay showed that the expression of CAFs markers FAP, ACTA, CAV, CCL5, CXCR4, FSP1, SDF-1 and vimentin were 9.92±2.16, 7.76±1.28, 3.04±0.95, 3.28±2.16, 2.13±0.71, 1.41±0.66, 2.25±0.86 and 1.38±0.56, respectively, significantly upregulated in the MSCs co-cultured with TGF-β1 or TCM. The relative levels of FAP, ACTA, CAV, CCL5, CXCR4, FSP1, SDF-1 and vimentin mRNA in the TCM group were 7.52±1.76, 5.02±1.18, 1.98±1.19, 1.82±1.19, 2.95±0.86, 1.44±0.67, 2.08±0.74 and 1.47±0.55, respectively, indicating that MSCs can express CAFs phenotype.TGF beta signaling pathway inhibitor SB-431542 could inhibit the differentiation. Both immunofluorescence and Western blot confirmed the above results.
CONCLUSIONSTGF-β1 induces differentiation of local MSCs to CAFs by upregulating the expression of pSmad3, so as to further promote the growth of cancer cells.
Benzamides ; pharmacology ; Bone Marrow Cells ; cytology ; Cell Differentiation ; drug effects ; Cell Line, Tumor ; Chemokine CXCL12 ; metabolism ; Coculture Techniques ; Culture Media, Conditioned ; Dioxoles ; pharmacology ; Fibroblasts ; cytology ; Humans ; Mesenchymal Stromal Cells ; cytology ; drug effects ; Organic Chemicals ; Receptors, CXCR4 ; metabolism ; Recombinant Proteins ; pharmacology ; Smad3 Protein ; metabolism ; Transforming Growth Factor beta1 ; antagonists & inhibitors ; pharmacology ; Vimentin ; metabolism
4.Silencing of CXCR4 Inhibits Tumor Cell Proliferation and Neural Invasion in Human Hilar Cholangiocarcinoma.
Xin Yu TAN ; Shi CHANG ; Wei LIU ; Hui Huan TANG
Gut and Liver 2014;8(2):196-204
BACKGROUND/AIMS: To evaluate the expression of CXC motif chemokine receptor 4 (CXCR4) in the tissues of patients with hilar cholangiocarcinoma (hilar-CCA) and to investigate the cell proliferation and frequency of neural invasion (NI) influenced by RNAi-mediated CXCR4 silencing. METHODS: An immunohistochemical technique was used to detect the expression of CXCR4 in 41 clinical tissues, including hilar-CCA, cholangitis, and normal bile duct tissues. The effects of small interference RNA (siRNA)-mediated CXCR4 silencing were detected in the hilar-CCA cell line QBC939. Cell proliferation was determined by MTT. Expression of CXCR4 was monitored by quantitative real time polymerase chain reaction and Western blot analysis. The NI ability of hilar-CCA cells was evaluated using a perineural cell and hilar-CCA cell coculture migration assay. RESULTS: The expression of CXCR4 was significantly induced in clinical hilar-CCA tissue. There was a positive correlation between the expression of CXCR4 and lymph node metastasis/NI in hilar-CCA patients (p<0.05). Silencing of CXCR4 in tumor cell lines by siRNA led to significantly decreased NI (p<0.05) and slightly decreased cell proliferation. CONCLUSIONS: CXCR4 is likely correlated with clinical recurrence of hilar-CCA. CXCR4 is involved in the invasion and proliferation of human hilar-CCA cell line QBC939, indicating that CXCR4 could be a promising therapeutic target for hilar-CCA.
Aged
;
Bile Duct Neoplasms/metabolism/*pathology
;
Bile Ducts, Intrahepatic/metabolism/*pathology
;
Case-Control Studies
;
Cell Line, Tumor
;
Cell Proliferation
;
Cholangiocarcinoma/metabolism/*pathology
;
Female
;
Humans
;
Immunohistochemistry
;
Male
;
Middle Aged
;
Neoplasm Invasiveness
;
Neoplasm Recurrence, Local/metabolism/pathology
;
RNA Interference/*physiology
;
RNA, Small Interfering/metabolism
;
Receptors, CXCR4/antagonists & inhibitors/*metabolism
;
Tumor Cells, Cultured
5.Effect of Endogenous Bone Marrow Derived Stem Cells Induced by AMD-3100 on Expanded Ischemic Flap.
Hii Sun JEONG ; Hye Kyung LEE ; Kwan Chul TARK ; Dae Hyun LEW ; Yoon Woo KOH ; Chul Hoon KIM ; In Suck SEO
Journal of Korean Medical Science 2014;29(Suppl 3):S237-S248
The purpose of this study was to devise an expanded ischemic flap model and to investigate the role of AMD-3100 (Plerixafor, chemokine receptor 4 inhibitor) in this model by confirming its effect on mobilization of stem cells from the bone marrow. Male Sprague-Dawley rats were used as an animal research model. The mobilization of stem cells from the bone marrow was confirmed in the AMD-3100-treated group. The fractions of endothelial progenitor cells (EPC) and the vascular endothelial growth factor receptor (VEGFR) 2+ cells in the peripheral blood were increased in groups treated with AMD-3100. The expression of vascular endothelial growth factor (VEGF) was increased in response to expansion or AMD injection. The expression of stromal cell derived factor (SDF)-1 and VEGFR2 were increased only in unexpanded flap treated with AMD-3100. Treatment with AMD-3100 increased both the number and area of blood vessels. However, there were no statistically significant differences in the survival area or physiologic microcirculation in rats from the other groups. This endogenous neovascularization induced by AMD-3100 may be a result of the increase in both the area and number of vessels, as well as paracrine augmentation of the expression of VEGF and EPCs. However, the presence of a tissue expander under the flap could block the neovascularization between the flap and the recipient regardless of AMD-3100 treatment and expansion.
Animals
;
Anti-HIV Agents/pharmacology
;
Bone Marrow Cells/cytology
;
Chemokine CXCL12/biosynthesis
;
Endothelial Progenitor Cells/*cytology
;
Hematopoietic Stem Cells/*cytology
;
Heterocyclic Compounds/*pharmacology
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
;
Male
;
Neovascularization, Physiologic
;
Nitric Oxide Synthase Type III/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, CXCR4/antagonists & inhibitors
;
Surgical Flaps/*blood supply/surgery
;
Tissue Expansion/*methods
;
Vascular Endothelial Growth Factor A/biosynthesis
;
Vascular Endothelial Growth Factor Receptor-2/biosynthesis/metabolism
6.Construction of SDF-1P2G54, a specific antagonist of CXCR4.
Feihua YANG ; Beiguo LONG ; Yi TAN ; Ya GONG ; Weifeng MA
Journal of Southern Medical University 2012;32(1):55-60
OBJECTIVETo obtain a specific antagonist of CXCR4, SDF-1P2G54 by mutating SDF-1 second proline (P) into glycin (G) and removing the α-helix of its C-terminal.
METHODSSDF-1p2g54 gene amplified by PCR was inserted into the vector pET-30a (+) and transformed into Escherichia coli (E. coli) strain BL21. After IPTG induction of E. coli, the expressed recombinant protein was purified with nickel-affinity chromatography column under denaturing conditions and refolded with gradient dilution and ultra-filtration. The chemotactic effect of SDF-1P2G54 on Jurkat cells and its antagonistic effect against SDF-1 were determined by transwell assay; flow cytometry was used to assay the ability of SDF-1P2G54 to induce calcium influx and CXCR4 internalization in MOLT4 cells.
RESULTSThe recombinant protein SDF-1P2G54 completely lost the functions to activate CXCR4 or to induce transmembrane migration of Jurkat cells and calcium influx in MOLT4 cells, but maintained a high affinity to CXCR4. SDF-1P2G54 effectively inhibited the chemotactic effect of wild-type SDF-1 to Jurkat cells, and induced rapid CXCR4 internalization in MOLT4 cells.
CONCLUSIONSDF-1P2G54 is a new antagonist of CXCR4 with a potential value as an effective inhibitor of HIV-1 infection, cancer metastasis or other major diseases.
Cell Line ; Chemokines, CXC ; biosynthesis ; genetics ; Escherichia coli ; genetics ; metabolism ; Humans ; Mutant Proteins ; biosynthesis ; genetics ; Receptors, CXCR4 ; antagonists & inhibitors ; Recombinant Proteins ; biosynthesis ; genetics
7.Advances in the study of small molecule antagonists of chemokine receptors as anti-asthma agents.
Hai-jie JI ; Jin-feng HU ; Nai-hong CHEN
Acta Pharmaceutica Sinica 2011;46(11):1286-1290
Asthma is a chronic inflammatory respiratory disease accompanied with airway inflammation, airway remodeling and bronchial hyperresponsiveness. Chemokines are important for the recruitment of immune cells to the lung, which play an important role in the formation and development of asthma. Targeting the chemokine receptors to anti-inflammation and anti-asthma is a new strategy and some candidate drugs are discovered recently. This review is focused on the development of chemokine receptor antagonists for anti-asthma, which will promote the compound designations.
Animals
;
Anti-Asthmatic Agents
;
pharmacology
;
therapeutic use
;
Asthma
;
drug therapy
;
Heterocyclic Compounds
;
pharmacology
;
Humans
;
Phenylurea Compounds
;
therapeutic use
;
Piperidines
;
pharmacology
;
therapeutic use
;
Pyridazines
;
pharmacology
;
Receptors, CCR1
;
antagonists & inhibitors
;
Receptors, CCR3
;
antagonists & inhibitors
;
Receptors, CCR4
;
antagonists & inhibitors
;
Receptors, CXCR4
;
antagonists & inhibitors
;
Receptors, Chemokine
;
antagonists & inhibitors
8.Some research progress of CXCR4 antagonist AMD3100.
Chun-Kang CHANG ; Xi ZHANG ; You-Shan ZHAO ; Xiao LI
Journal of Experimental Hematology 2011;19(3):831-834
AMD3100 (Plerixafor) is an antagonist of CXCR4, receptor for stromal cell-derived factor-1 (SDF-1).It disrupts binding of SDF-1 to CXCR4 by competing binding site, thus blocking the physiological function of SDF-1/CXCR4 axis. SDF-1/CXCR4 axis has been shown to play critical roles in stem cell mobilization, migration and homing, and in immunoregulation, inflammatory disease, autoimmune disorder, embryonic development, and tumor cell proliferation, migration and location. AMD3100 has been confined effective for the mobilization of HSC and MSC, inhibition of carcinoma growth and metastasis, suppression of some inflammatory and autoimmune disorder. Therefore, further research on AMD3100 will be helpful to understand the effects of bone marrow microenvironment on the pathogenesis of neoplasm, and to restore the traumatic tissues by mobilizing HSC effectively, that might provide a new idea and measure for the treatment of certain neoplasms. Some research progress of basic research and application on AMD3100 are summarized in this review.
Heterocyclic Compounds
;
pharmacology
;
Receptors, CXCR4
;
antagonists & inhibitors
9.Expression of SDF-1 in lung tissues and intervention of AMD3100 in asthmatic rats.
Li-Ping ZOU ; Li-Xia WANG ; Yan ZHANG ; Wen-Li DU
Chinese Journal of Contemporary Pediatrics 2011;13(4):321-325
OBJECTIVETo study the expression of stromal cell derived factor-1(SDF-1) in the airway and to investigate the role of SDF-1 receptor antagonist AMD3100 intervention in rats with asthma.
METHODSThirty Sprague-Dawley rats were randomly divided into three groups: normal control and asthma with and without AMD3100 intervention. The rat model of asthma was prepared by aerosolized ovalbum (OVA) challenge. The AMD3100 intervention group was administered with AMD3100 of 50 μg 30 minutes before challenge every other day, for 10 times. The characteristic airway inflammation and alterations of airway structures were observed by hemetoxylin and eosin staining. The levels of interleukin 4 and interleukin 5 in whole lung homogenates were measured using ELISA. RT-PCR was used to evaluate the expression of SDF-1 mRNA in the lung.
RESULTSThe airway wall thickness in the untreated asthma group was greater than that in the control and the AMD3100 intervention groups (P<0.05). The levels of interleukin 4 and interleukin 5 in whole lung homogenates in the AMD3100 intervention group were lower than those in the untreated asthma group (P<0.05). The expression of SDF-1 mRNA in the untreated asthma group was higher than that in the control and the AMD3100 intervention groups (P<0.05).
CONCLUSIONSSDF-1 may be associated with airway inflammation and remodeling in rats with asthma. AMD3100 may reduce the airway inflammation and improve airway remodeling by inhibiting the bioactivity of SDF-1.
Animals ; Asthma ; drug therapy ; etiology ; metabolism ; Chemokine CXCL12 ; analysis ; antagonists & inhibitors ; genetics ; physiology ; Female ; Heterocyclic Compounds ; pharmacology ; Interleukin-4 ; analysis ; Interleukin-5 ; analysis ; Lung ; metabolism ; pathology ; RNA, Messenger ; analysis ; Rats ; Rats, Sprague-Dawley ; Receptors, CXCR4 ; antagonists & inhibitors
10.HIV entry inhibitors: progress in development and application.
Wei-hong LAI ; Li HUANG ; Chin-ho CHEN
Acta Pharmaceutica Sinica 2010;45(2):131-140
This review discusses recent progress in the development of anti-HIV agents, with emphasis on small molecule HIV-1 entry inhibitors. The entry inhibitors primarily target HIV-1 envelope glycoproteins or the cellular receptors, CD4 and chemokine receptors. Two of the entry inhibitors, enfuvirtide and maraviroc, have been approved by the US FDA for AIDS therapy. The drug resistance associated with some of the entry inhibitors will also be discussed.
Anti-HIV Agents
;
chemistry
;
pharmacology
;
therapeutic use
;
CCR5 Receptor Antagonists
;
CD4 Antigens
;
drug effects
;
Cyclohexanes
;
pharmacology
;
therapeutic use
;
Drug Resistance, Viral
;
HIV Envelope Protein gp120
;
pharmacology
;
HIV Envelope Protein gp41
;
pharmacology
;
therapeutic use
;
HIV Fusion Inhibitors
;
chemistry
;
pharmacology
;
therapeutic use
;
HIV Infections
;
drug therapy
;
HIV-1
;
drug effects
;
Humans
;
Molecular Structure
;
Peptide Fragments
;
pharmacology
;
therapeutic use
;
Receptors, CCR5
;
physiology
;
Receptors, CXCR4
;
antagonists & inhibitors
;
Receptors, Chemokine
;
drug effects
;
Triazoles
;
pharmacology
;
therapeutic use

Result Analysis
Print
Save
E-mail