1.A review on the role of angiotensin-converting enzyme 2 in children with coronavirus disease 2019.
Jing LIU ; Guo-Qian CHEN ; Li WEI ; Fu-Yong JIAO
Chinese Journal of Contemporary Pediatrics 2020;22(12):1344-1348
With the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) all over the world, there is an increasing number of children with such infection. Angiotensin-converting enzyme 2 (ACE2), one of the binding sites for SARS-CoV-2 infection in humans, can bind to viral spike proteins, allowing transmembrane serine protease (TMPRSS2) to activate S-protein to trigger infection and induce the production of various inflammatory factors such as interleukin-1, interferon-l, and tumor necrosis factor. Compared with adults, children tend to have lower expression levels of ACE2 and TMPRSS2, which are presumed to be associated with milder symptoms and fewer cases in children. The article summarizes the research advances in the role of ACE2 during SARS-CoV-2 infection, in order to help understand the pathogenic mechanism of SARS-CoV-2 and provide a reference for better development of drugs and vaccines to prevent and treat coronavirus disease 2019 in children.
Angiotensin-Converting Enzyme 2/metabolism*
;
COVID-19
;
Child
;
Humans
;
Receptors, Virus/metabolism*
;
SARS-CoV-2
;
Serine Endopeptidases/metabolism*
2.Role of ACE2-Ang (1-7)-Mas receptor axis in heart failure with preserved ejection fraction with hypertension.
Jiangbiao YU ; Yonggang WU ; Yinzhuang ZHANG ; Licheng ZHANG ; Qilin MA ; Xiuju LUO
Journal of Central South University(Medical Sciences) 2018;43(7):738-746
To investigate changes in the angiotensin converting enzyme 2 (ACE2) and angiotensin (1-7) [Ang (1-7)] and to explore the role of ACE2-Ang (1-7)-Mas receptor axis in hypertension with heart failure with preserved ejection fraction (HFPEF).
Methods: A total of 70 patients with primary hypertension and preserved left ventricular ejection fraction (LVEF>50%) were recruited and patients were divided into a hypertension group (HBP) and a heart failure with preserved ejection fraction group (HFpEF) according to the diagnostic criteria of HFpEF. Thirty-five healthy participants were selected randomly as a control group. Enzyme linked immunosorbent assays (ELISA) method was used to detect concentration of Ang (1-7), ACE2, angiotensin II (Ang II), brain natriuretic peptide (BNP) in plasma. Male Sprague- Dawley (SD) rats was randomly divided into 2 groups: An HFpEF group (n=16) and a sham group (n=8). Rats (n=8) in the AAC group were given Ang (1-7) [0.5 mg/(kg.d), intraperitoneally] for 6 weeks, and the rest were given equal dose normal saline. Then all the rats were killed, and the hearts were taken out for hematoxylineosin (HE) staining. The protein expressions of angiotensin converting enzyme (ACE), ACE2, and Mas receptor were detected by Western blot.
Results: The BNP and Ang II were significantly increased in the HBP group and the HFpEF group compared with the control group (P<0.01). There were not significantly different in levels of ACE2 and Ang (1-7) between the HBP group and control group (P>0.05), whereas those levels were significantly increased in the HFpEF group compared with the HBP group and control group (P<0.01). HE staining showed obvious hypertrophy of myocardial cell in the AAC group compared with the sham group. Hypertrophy of myocardial cell in the AAC+Ang (1-7) group was significantly higher than that in the AAC group. Expressions of ACE, ACE2, and Mas receptor proteins were significantly higher in the AAC group than those in the sham group (P<0.05), while the expressions of ACE2 and Mas receptor proteins in the AAC+Ang (1-7) group were significantly higher than those in the AAC group (P<0.05). There was no significant difference in the ACE protein expression between groups (P>0.05).
Conclusion: ACE2 and Ang (1-7) are important predictive factors for the severity of heart failure and myocardial remodeling of HFpEF with hypertension; ACE2-Ang (1-7)-Mas receptor axis may play a protective role in preventing myocardial remodeling in HFpEF with hypertension.
Angiotensin I
;
physiology
;
Angiotensin II
;
Animals
;
Atrial Remodeling
;
physiology
;
Case-Control Studies
;
Enzyme-Linked Immunosorbent Assay
;
Heart Failure
;
metabolism
;
physiopathology
;
Humans
;
Hypertension
;
metabolism
;
physiopathology
;
Male
;
Peptide Fragments
;
physiology
;
Peptidyl-Dipeptidase A
;
physiology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, G-Protein-Coupled
;
physiology
;
Stroke Volume
;
Ventricular Function, Left
;
physiology
;
Ventricular Remodeling
;
physiology
3.Effect of angiotensin receptor blockade on central aortic systolic blood pressure in hypertensive Asians measured using radial tonometry: an open prospective cohort study.
Hui Hwang TEONG ; Adeline Mei Lin CHIN ; Ashish Anil SULE ; Jam Chin TAY
Singapore medical journal 2016;57(7):384-389
INTRODUCTIONCentral aortic systolic pressure (CASP) has been shown to be a stronger predictor of cardiovascular events than brachial blood pressure (BP). Different classes of drugs have differential effects on CASP and brachial BP. This open prospective cohort study aimed to observe changes in CASP (measured using radial tonometry) among hypertensive Asians after 12 weeks of treatment with valsartan, an angiotensin receptor blocker (ARB).
METHODSPatients with treatment-naïve hypertension or uncontrolled hypertension who were on non-ARB therapy were eligible for inclusion. Patients with uncontrolled BP (i.e. ≥ 140/90 mmHg) received valsartan for 12 weeks. The patients' brachial systolic and diastolic BP (SBP and DBP), and CASP changes were monitored using the BPro® watch.
RESULTSThe mean age of the 44 enrolled patients was 35 years. At baseline, the mean BP and CASP were 150.2/91.4 ± 10.6/9.4 mmHg and 136.3 ± 12.2 mmHg, respectively. Valsartan reduced SBP, DBP and CASP by 14.9 ± 10.7 mmHg, 10.9 ± 8.4 mmHg and 15.3 ± 10.9 mmHg, respectively (all p < 0.001). Every 1.0-mmHg reduction in brachial SBP resulted in a 0.8-mmHg reduction in CASP (p < 0.001). A CASP cut-off of 122.5 mmHg discriminated between controlled and uncontrolled BP (sensitivity 74%, specificity 88%).
CONCLUSIONUsing radial tonometry, we demonstrated good correlation between CASP and brachial SBP reductions after 12 weeks of treatment with valsartan in our study cohort. Correlation analysis between CASP and SBP reductions may be useful for demonstrating whether a drug is able to lower CASP beyond lowering SBP.
Adult ; Angiotensin Receptor Antagonists ; pharmacology ; Aorta ; drug effects ; Blood Pressure ; Blood Pressure Monitoring, Ambulatory ; Diastole ; Female ; Humans ; Hypertension ; drug therapy ; Male ; Manometry ; methods ; Middle Aged ; Prospective Studies ; Receptors, Angiotensin ; metabolism ; Systole ; drug effects ; Valsartan ; therapeutic use ; Young Adult
4.Protective effect and mechanism of β-CM7 on renin angiotensin system & diabetic cardiomyopathy.
Kun WANG ; Dongning HAN ; Yujuan ZHANG ; Chao RONG ; Yuanshu ZHANG
Chinese Journal of Biotechnology 2016;32(2):195-203
This article aimed at exploring the effects and protective mechanism of β-CM7 on renin angiotensin system (RAS) in diabetic rats myocardial tissue. We divided 32 male SD rats into 4 groups: control group, diabetic model control group, insulin (3.7x10(-8) mol/d) treatment group and β-CM7 (7.5x10(-8) mol/d) treatment group. After 30 days, all rats were decapitated and myocardical tissues were collected immediately. After injection, β-CM7 could decrease the content of Ang II, increase the content of Angl-7. And β-CM7 could improve the mRNA of AT1 receptor and Mas receptor. β-CM7 also could improve the mRNA of ACE and ACE2, enhance the activity of ACE and ACE2. These data confirmed tli β-CM7 could activate ACE2-Angl-7-Mas axis, negative passage in RAS, to inhibit the expression ACE mnRiJA and protein in rat myocardium, alleviate the myocardial tissue damage induced by Ang II. The effect of β-CM7 on inhibiting myocardium damage might be related to ACE/ACE2 passageway.
Angiotensin II
;
metabolism
;
Animals
;
Diabetes Mellitus, Experimental
;
drug therapy
;
Diabetic Cardiomyopathies
;
drug therapy
;
Endorphins
;
pharmacology
;
Male
;
Myocardium
;
metabolism
;
pathology
;
Peptide Fragments
;
pharmacology
;
Peptidyl-Dipeptidase A
;
metabolism
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Angiotensin, Type 1
;
metabolism
;
Receptors, G-Protein-Coupled
;
metabolism
;
Renin-Angiotensin System
5.Effect of Astragali Radix in improving early renal damage in metabolic syndrome rats through ACE2/Mas pathway.
Qiong-ying WANG ; Wei LIANG ; Cheng JIANG ; Ning-yin LI ; Han XU ; Mi-na YANG ; Xin LIN ; Heng YU ; Peng CHANG ; Jing YU
China Journal of Chinese Materia Medica 2015;40(21):4245-4250
To study the expression of angiotensin converting enzyme 2 (ACE2) and angiotensin (Ang) 1-7 specific receptor Mas protain in renal blood vessels of metabolic syndrome ( MS) rats and its anti-oxidative effect. A total of 80 male SD rats were divided into four groups: the normal control group (NC, the same volume of normal saline), the MS group (high fat diet), the MS + Astragali Radix group (MS + HQ, 6 g x kg(-1) x d(-1) in gavage) and the MS + Valsartan group (MS + XST, 30 mg x kg(-1) x d(-1) in gavage). After four weeks of intervention, their general indexes, biochemical indexes and blood pressure were measured; plasma and renal tissue Ang II, malondialdehyde (MDA) and superoxide demutase (SOD) levels were measured with radioimmunoassay. The protein expressions of Mas receptor, AT1R, ACE and ACE2 were detected by western blot analysis. According to the result, compared with the NC group, the MS group and the MS + HQ group showed significant increases in systolic and diastolic pressures, body weight, fasting glucose, fasting insulin, triglycerides, free fatty acid and Ang II level of MS rats (P < 0.05). The MS + XST group showed notable decreases in systolic and diastolic pressures than that of the MS group. The MS group showed significant increases in the SOD activity and NO level and decrease in the MDA level after being intervened with Astragali Radix. ACE and AT1R protein expressions in renal tissues of the MS group were higher than that in the NC group, but with lower ACE2 and -Mas receptor expressions (all P < 0.05). Compared with the MS group, the MS + HQ group showed significant increase in Mas receptor expression in renal tissues, whereas the MS + XST group showed notable decrease in AT1R (all P < 0.05). In conclusion, Astragali Radix can increase the Mas receptor expressions in renal tissues, decrease ACE expression and change local Ang II, MDA, NO and SOD in kidneys, so as to protect early damages in renal tissues.
Angiotensin I
;
metabolism
;
Animals
;
Astragalus Plant
;
chemistry
;
Blood Glucose
;
metabolism
;
Blood Pressure
;
drug effects
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Kidney
;
drug effects
;
injuries
;
metabolism
;
Male
;
Malondialdehyde
;
metabolism
;
Metabolic Syndrome
;
drug therapy
;
genetics
;
metabolism
;
physiopathology
;
Peptide Fragments
;
metabolism
;
Peptidyl-Dipeptidase A
;
genetics
;
metabolism
;
Proto-Oncogene Proteins
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, G-Protein-Coupled
;
genetics
;
metabolism
;
Signal Transduction
;
drug effects
6.Effect of Chinese herbs for stasis removing and collaterals dredging upon angiotensin-converting enzyme 2-angiotensin-(1-7)-mas axis in the renal cortex of diabetic nephropathy rats.
Jing XU ; Er-wei MA ; Lu BAI ; Yun MA ; Qian GUO ; Rui JIA ; Jiang-hua ZHANG ; Zhi-qiang CHEN
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(6):714-721
OBJECTIVETo observe the effect of Chinese herbs for stasis removing and collaterals dredging (CHSRCD) upon angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas axis in the renal cortex of diabetic nephropathy rats.
METHODSTotally 89 male Sprague-Dawley rats were randomly divided into the blank control group (C group, n=22), the high-glucose high-fat control group (H group, n=10), and the streptozotocin (STZ)-injecting group (n=57). The diabetes rat model (n=50) was induced by feeding high-glucose high-fat diet in combination with intraperitoneal injection of STZ, which were further divided into the model group (M group, n=24), the irbesartan group (I group, n=13), and the CHSRCD (Z group, n=13). Rats in I and Z groups were intragastrically fed with suspension of irbesartan and CHSRCD, once daily for 16 weeks. Equal volume of drinking water was administrated to rats in the rest groups. Blood glucose and 24 h urine protein quantitation were tested at four time points. And the mRNA expression of ACE2 and Mas at various time points was detected by Real-time PCR, immunohistochemical assay, and Western blot. Quantitative analyses of ACE2 and Mas protein expression were performed at the end of week 16.
RESULTSCompared with the C group, blood glucose increased in the H and M groups (P < 0.01). It was higher in the H group (P < 0. 01). 24 h urine protein quantitation at different time points increased in the M group, and it was higher than that in the H group (P < 0.05). Compared with the M group, 24 h urine protein quantitation decreased at the end of week 8 in the I group, and at the end of week 8 and 16 in the Z group (P < 0.05). It was lower in the Z group than in the I group at the end of week 16 (P < 0.05). Compared with the C and H groups, the expression of ACE2 mRNA in the renal cortex was lower in the M group at the end of week 16 (P < 0.01). Compared with the M group, it was higher in the Z group (P < 0. 01). There was no statistical difference in the expressions of Mas mRNA at the end of week 16 between the C group and the M group (P > 0.05). It was lower in the M group than in the H group (P < 0.05). It was higher in the Z group than in the M group (P < 0.05), and higher than in the I group (P < 0.05). The expression of ACE2 and Mas protein in the M group decreased as time went by. The expression quantitation of ACE2 and Mas protein at the end of week 16 was lower in the M group than in the C group (P < 0.05). Compared with the M group, ACE2 expression of the Z group and Mas of the I and Z groups increased more significantly (P < 0. 05).
CONCLUSIONCHSRCD could play a role in renal protection for diabetic nephropathy rats by up-regulating the mRNA and protein expression of ACE2 and Mas, promoting the ACE2-Ang-(1-7)-Mas axis, and lowering urinary protein.
Angiotensin I ; metabolism ; Animals ; Diabetes Mellitus, Experimental ; metabolism ; Diabetic Nephropathies ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Kidney Cortex ; metabolism ; Male ; Peptide Fragments ; metabolism ; Peptidyl-Dipeptidase A ; metabolism ; Proto-Oncogene Proteins ; metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, G-Protein-Coupled ; metabolism
7.Vitamin D receptor and its protective role in diabetic nephropathy.
Xiaoling GUAN ; Huajie YANG ; Wei ZHANG ; Huanjun WANG ; Lin LIAO
Chinese Medical Journal 2014;127(2):365-369
OBJECTIVETo review the advances of studies on vitamin D receptor and its role in the pathogenesis of diabetic nephropathy.
DATA SOURCESA comprehensive search of the PubMed literatures without restriction on the publication date was carried out using keywords such as vitamin D receptor and diabetic nephropathy.
STUDY SELECTIONArticles related to vitamin D receptor and diabetic nephropathy were selected and carefully analyzed.
RESULTSThe ligands as well as construction and tissue distribution of vitamin D receptor were summarized. Pathogenesis of diabetic nephropathy was analyzed. The mechanisms underlying the renoprotective role of vitamin D receptor including inhibition of renin-angiotensin system, anti-inflammation, anti-fibrosis and the reduction of proteinuria were reviewed. Mounting evidences from animal and clinical studies have suggested that vitamin D therapy has beneficial effects on the renal systems and the underlying renoprotective mechanisms of the vitamin D receptor-mediated signaling pathways is a hot research topic.
CONCLUSIONOur study suggests that vitamin D receptor has a great potential for preventing the progression of diabetic nephropathy via multiple mechanisms.
Animals ; Diabetic Nephropathies ; metabolism ; Humans ; Proteinuria ; metabolism ; Receptors, Calcitriol ; metabolism ; Renin-Angiotensin System ; physiology
8.An Angiotensin Receptor Blocker Prevents Arrhythmogenic Left Atrial Remodeling in a Rat Post Myocardial Infarction Induced Heart Failure Model.
Hyun Su KIM ; Chi Wan NO ; Sang Ho GOO ; Tae Joon CHA
Journal of Korean Medical Science 2013;28(5):700-708
This study investigated the role of angiotensin II receptor blocker in atrial remodeling in rats with atrial fibrillation (AF) induced by a myocardial infarction (MI). MIs were induced by a ligation of the left anterior descending coronary artery. Two days after, the rats in the losartan group were given losartan (10 mg/kg/day for 10 weeks). Ten weeks later, echocardiography and AF induction studies were conducted. Ejection fraction was significantly lower in the MI rats. Fibrosis analysis revealed much increased left atrial fibrosis in the MI group than sham (2.22 +/- 0.66% vs 0.25 +/- 0.08%, P = 0.001) and suppression in the losartan group (0.90 +/- 0.27%, P 0.001) compared with the MI group. AF inducibility was higher in the MI group than sham (39.4 +/- 43.0% vs 2.0 +/- 6.3%, P = 0.005) and significantly lower in losartan group (12.0 +/- 31.6%, P = 0.029) compared with the MI. The left atrial endothelial nitric oxide synthase (NOS) and sarco/endoplasmic reticulum Ca(2+)-ATPase levels were lower in the MI group and higher in the losartan group significantly. The atrial inducible NOS and sodium-calcium exchanger levels were higher in the MI and lower in the losartan group significantly. Losartan disrupts collagen fiber formation and prevents the alteration of the tissue eNOS and iNOS levels, which prevent subsequent AF induction.
Angiotensin Receptor Antagonists/*therapeutic use
;
Animals
;
Atrial Fibrillation/*prevention & control
;
Atrial Remodeling
;
Disease Models, Animal
;
Fibrosis
;
Heart Failure/*etiology/ultrasonography
;
Immunohistochemistry
;
Losartan/*therapeutic use
;
Male
;
Myocardial Infarction/*complications/ultrasonography
;
Nitric Oxide Synthase Type II/metabolism
;
Nitric Oxide Synthase Type III/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Angiotensin/chemistry/metabolism
;
Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
;
Sodium-Calcium Exchanger/metabolism
9.The effect of valsartan on the expression of the receptor for advanced glycation end products in human glomerular mesangial cells.
Lin-na ZHONG ; Guo-liang HUANG ; Min FENG ; Ying ZHANG
Chinese Journal of Applied Physiology 2011;27(3):338-342
OBJECTIVETo elucidate the effect of valsartan on human glomerular mesangial cells oxidative stress and the expression of the receptor for advanced glycation end products (RAGE) induced by the advanced glycation end-products (AGEs).
METHODSHuman glomerular mesangial cells were treated with advanced glycation end-product-bovine serum albumin (AGE-BSA) in the presence of valsartan. The reactive oxygen species (ROS) in cells were measured by Flow cytometry, and the mRNA of p47 phox, which was the primary subunits of NADPH oxidase, was detected by semi-quantitative reberse transcription polymerase chain reaction (RT-PCR). The mRNA of RAGE was detected by RT-PCR and the RAGE protein was assayed by immunocytochemistry.
RESULTSThe product of ROS, and the expression of p47 phox and RAGE in mesangial cells, which were treated with AGE-BSA in the presence of valsartan, were down-regulated compared with the groups treated with AGE-BSA (P < 0.05). Valsartan dose-dependently and time-dependently inhibited the AGE-elicited overexpression of RAGE, ROS and p47(phox) in mesangial cells.
CONCLUSIONValsartan could inhibit RAGE expression through downregulation of oxidative stress.
Angiotensin II Type 1 Receptor Blockers ; pharmacology ; Antioxidants ; pharmacology ; Glycation End Products, Advanced ; pharmacology ; Humans ; Mesangial Cells ; cytology ; metabolism ; Oxidative Stress ; drug effects ; RNA, Messenger ; genetics ; metabolism ; Receptor for Advanced Glycation End Products ; Receptors, Immunologic ; genetics ; metabolism ; Serum Albumin, Bovine ; pharmacology ; Tetrazoles ; pharmacology ; Valine ; analogs & derivatives ; pharmacology ; Valsartan
10.The expression of ACE, AT1, ACE2, MAS on heart from WKY and SHR.
Peng-Fei LI ; Wei ZHANG ; Chang MA ; Yuan-Shu ZHANG
Chinese Journal of Applied Physiology 2011;27(2):153-224
Animals
;
Hypertension
;
metabolism
;
physiopathology
;
Male
;
Myocardium
;
metabolism
;
Peptidyl-Dipeptidase A
;
genetics
;
metabolism
;
Proto-Oncogene Proteins
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Receptor, Angiotensin, Type 1
;
genetics
;
metabolism
;
Receptors, G-Protein-Coupled
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail