2.Dexmedetomidine improves alcohol withdrawal symptom via activating α2 adrenergic receptor in rat hippocampus.
Ting ZENG ; Hong-Yan ZHANG ; Xin ZHAO ; Yan LIU ; Yan-Zhong GUAN
Acta Physiologica Sinica 2022;74(4):541-547
The purpose of this study was to investigate the effects of α2 adrenergic receptor agonist dexmedetomidine on withdrawal symptoms in alcohol-dependent rats and the underlying mechanism, so as to provide a scientific basis for the treatment of alcohol withdrawal syndrome (AWS). Adult Sprague-Dawley (SD) male rats were orally administered with 6% aqueous alcohol continuously for 28 d to establish alcohol drinking model, and then stopped drinking to induce AWS. Enzyme-linked immunosorbent assay (ELISA) was used to determine the content of norepinephrine (NE) in the locus coeruleus and hippocampus of rats. Dexmedetomidine (5, 10, and 20 μg/kg) was intraperitoneally injected respectively when the rats showed significant AWS. In some rats, α2 adrenergic receptor antagonist yohimbine was injected into hippocampus in advance. The results showed that, compared with the control group, the 6 h withdrawal group exhibited significantly increased AWS score and amount of repeat drinking. The NE contents in hippocampus and locus coeruleus of the last drinking and the 6 h withdrawal groups were significantly increased compared with those of the control group. Dexmedetomidine intervention significantly decreased AWS score and hippocampus NE content in the 6 h withdrawal group, while yohimbine could reverse these effects of dexmedetomidine. These results suggest that dexmedetomidine might improve the withdrawal symptoms in alcohol-dependent rats via activating α2 adrenergic receptor.
Adrenergic alpha-2 Receptor Agonists/therapeutic use*
;
Alcoholism/drug therapy*
;
Animals
;
Dexmedetomidine/therapeutic use*
;
Hippocampus/metabolism*
;
Male
;
Norepinephrine
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Adrenergic, alpha-2/metabolism*
;
Substance Withdrawal Syndrome/drug therapy*
;
Yohimbine/pharmacology*
3.Dexmedetomidine Promotes Angiogenesis and Vasculogenic Mimicry in Human Hepatocellular Carcinoma through α 2-AR/HIF-1α/VEGFA Pathway.
Tao FANG ; Li LIN ; Zhi Jian YE ; Lian FANG ; Shuai SHI ; Ke Da YU ; Hui Hui MIAO ; Tian Zuo LI
Biomedical and Environmental Sciences 2022;35(10):931-942
OBJECTIVE:
Dexmedetomidine (DEX), the most specific α 2-adrenergic receptor agonist widely used for its sedative and analgesic properties, has been reported to upregulate HIF-1α expression to protect hypoxic and ischemic tissues. However, it is largely unclear whether DEX can also upregulate Hypoxia-inducible factor-1 alpha (HIF-1α) expression and its downstream vascular endothelial growth factor-A (VEGFA) in cancer tissues with oxygen-deficient tumor microenvironment.
METHODS:
We used SMMC-7721 cells, MHCC97-H cells, and a mouse model of orthotopic hepatic carcinoma to explore the effect of DEX on angiogenesis and vasculogenic mimicry (VM) and its mechanism. Under normoxic (20% O 2) and hypoxic (1% O 2) conditions, DEX was used to intervene cells, and yohimbine was used to rescue them.
RESULTS:
The results showed that DEX promoted angiogenesis and VM in human liver cancer cells within a certain dose range, and the addition of yohimbine inhibited this effect. DEX could activate HIF-1α/VEGFA pathway, which was further verified by silencing HIF-1α. Consistently, in vivo results also showed that DEX can up-regulate HIF-1α/VEGFA expression, and enhance the number of VM channels and microvessel density (MVD).
CONCLUSION
We believe that HIF-1α/VEGFA might be an important signaling pathway by which DEX promotes angiogenesis and VM formation in human hepatocellular carcinoma, whereas α 2-adrenergic receptor mediation might be the critical mechanisms.
Animals
;
Humans
;
Mice
;
Adrenergic alpha-2 Receptor Agonists/pharmacology*
;
Carcinoma, Hepatocellular
;
Cardiovascular Physiological Phenomena
;
Dexmedetomidine/pharmacology*
;
Hypoxia
;
Liver Neoplasms/drug therapy*
;
Oxygen
;
Tumor Microenvironment
;
Vascular Endothelial Growth Factor A/genetics*
;
Receptors, Adrenergic, alpha-2/metabolism*
5.Noradrenaline modulates the spontaneous firing activities of Purkinje cells via α2-adrenergic receptor in mouse cerebellar cortex.
Xu-Dong ZHANG ; Li-Fei WANG ; Fang-Ling XUAN ; De-Lai QIU ; Bin-Bin ZHANG ; Chun-Ping CHU
Acta Physiologica Sinica 2022;74(3):359-369
Cerebellar Purkinje cells (PCs) exhibit two types of discharge activities: simple spike (SS) and complex spike (CS). Previous studies found that noradrenaline (NA) can inhibit CS and bidirectionally regulate SS, but the enhancement of NA on SS is overwhelmed by the strong inhibition of excitatory molecular layer interneurons. However, the mechanism underlying the effect of NA on SS discharge frequency is not clear. Therefore, in the present study, we examined the mechanism underlying the increasing effect of NA on SS firing of PC in mouse cerebellar cortex in vivo and in cerebellar slice by cell-attached and whole-cell recording technique and pharmacological methods. GABAA receptor was blocked by 100 µmol/L picrotoxin in the whole process. In vivo results showed that NA significantly reduced the number of spikelets of spontaneous CS and enhanced the discharge frequency of SS, but did not affect the discharge frequency of CS. In vitro experiments showed that NA reduced the number of CS spikelets and after hyperpolarization potential (AHP) induced by electrical stimulation, and increased the discharge frequency of SS. NA also reduced the amplitude of excitatory postsynaptic current (EPSC) of parallel fiber (PF)-PC and significantly increased the paired-pulse ratio (PPR). Application of yohimbine, an antagonist of α2-adrenergic receptor (AR), completely eliminated the enhancing effect of NA on SS. The α2-AR agonist, UK14304, also increased the frequency of SS. The β-AR blocker, propranolol, did not affect the effects of NA on PC. These results suggest that in the absence of GABAA receptors, NA could attenuate the synaptic transmission of climbing fiber (CF)-PC via activating α2-AR, inhibit CS activity and reduce AHP, thus enhancing the SS discharge frequency of PC. This result suggests that NA neurons of locus coeruleus can finely regulate PC signal output by regulating CF-PC synaptic transmission.
Action Potentials/physiology*
;
Animals
;
Cerebellar Cortex/metabolism*
;
Cerebellum/metabolism*
;
Mice
;
Norepinephrine/pharmacology*
;
Purkinje Cells/metabolism*
;
Receptors, Adrenergic, alpha-2/metabolism*
;
Receptors, GABA-A/metabolism*
6.β-arrestin2 recruitment by β-adrenergic receptor agonists and antagonists.
Yi-Ran WANG ; De-Qin CHENG ; Lan MA ; Xing LIU
Acta Physiologica Sinica 2022;74(6):993-1004
A large number of β-adrenergic receptor (β-AR) agonists and antagonists are widely used in the treatment of cardiovascular diseases and other diseases. Nonetheless, it remains unclear whether these commonly used β-AR drugs can activate downstream β- arrestin-biased signaling pathways. The objective of this study was to investigate β-arrestin2 recruitment effects of β-AR agonists and antagonists that were commonly used in clinical practice. We used TANGO (transcriptional activation following arrestin translocation) assay to detect the β-arrestin2 recruitment by β-AR ligands in HEK293 cell line (HTLA cells) stably transfected with tetracycline transactivator protein (tTA) dependent luciferase reporter and β-arrestin2-TEV fusion gene. Upon activation of β-AR by a β-AR ligand, β-arrestin2 was recruited to the C terminus of the receptor, followed by cleavage of the G protein-coupled receptors (GPCRs) fusion protein at the TEV protease-cleavage site. The cleavage resulted in the release of tTA, which, after being transported to the nucleus, activated transcription of the luciferase reporter gene. The results showed that β-AR non-selective agonists epinephrine, noradrenaline and isoprenaline all promoted β-arrestin2 recruitment at β1-AR and β2-AR. β1-AR selective agonists dobutamine and denopamine both promoted β-arrestin2 recruitment at β1-AR. β2-AR selective agonists procaterol and salbutamol promoted β-arrestin2 recruitment at β2-AR. β-AR non-selective antagonists alprenolol and pindolol promoted β-arrestin2 recruitment at β1-AR. β1-AR selective antagonists celiprolol and bevantolol showed β-arrestin2 recruitment at β1-AR. β2-AR selective antagonists butoxamine showed β-arrestin2 recruitment at β1-AR. These results provide some clues for the potential action of β-AR drugs, and lay a foundation for the screening of β-arrestin-biased β-AR ligands.
Humans
;
beta-Arrestin 2/metabolism*
;
HEK293 Cells
;
Adrenergic beta-Agonists/pharmacology*
;
Isoproterenol/pharmacology*
;
Receptors, Adrenergic, beta-2/metabolism*
;
Norepinephrine/pharmacology*
8.Association between
Ming-Xuan CAI ; Bing WEI ; Shi-E LIAO ; Jin-Yue FU ; Ya-Jun LIU ; Ling-Xue LI
Chinese Journal of Contemporary Pediatrics 2021;23(11):1132-1140
OBJECTIVES:
To study the association of β2-drenergic receptor (
METHODS:
A total of 143 children with asthma who attended the hospital from October 2016 to October 2020 were enrolled as the asthma group, among whom 61 children had mild symptoms (mild group) and 82 children had moderate-to-severe symptoms (moderate-to-severe group). A total of 137 healthy children were enrolled as the control group. Peripheral venous blood samples were collected from the two groups. The SNaPshot SNP technique was used to analyze the SNP and haplotypes of the
RESULTS:
Polymorphisms were observed in the
CONCLUSIONS
SNP/haplotype of the
Asthma/genetics*
;
Case-Control Studies
;
Child
;
Genetic Predisposition to Disease
;
Genotype
;
Haplotypes
;
Humans
;
Polymorphism, Single Nucleotide
;
Receptors, Adrenergic, beta-2/genetics*
;
Regulatory Sequences, Nucleic Acid
9.Role of adrenergic receptors in tumorigenesis and development of glioma.
Ye HE ; Yu-Ge ZHU ; Wei-Zhu LIU ; Wen-Hua ZHANG ; Bing-Xing PAN ; Ping HU
Acta Physiologica Sinica 2020;72(2):235-242
Gliomas are malignant tumors with strong invasiveness. The current treatment strategy is surgical treatment assisted by a variety of radiotherapies, chemotherapies and immunotherapies. However, the curative efficacy is limited. Adrenergic receptor (AR) is an important stress hormone receptor, which is highly involved in the regulation of the tumorigenesis and progression of various tumors by activating different downstream signal transduction pathways. Recent studies have shown that AR is dysregulated in glioma cells and tissues, and plays an important role in a series of biological behaviors such as tumorigenesis, invasion and metastasis of glioma. This article reviews the research progress of AR in the field of glioma in recent years, which provides a theoretical basis for the prevention and treatment of glioma targeting the AR.
Brain Neoplasms
;
pathology
;
Carcinogenesis
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Glioma
;
pathology
;
Humans
;
Neoplasm Invasiveness
;
Neoplasm Metastasis
;
Receptors, Adrenergic
;
physiology
;
Signal Transduction
10.Research advances on adrenergic receptor signaling involved in disease microenvironment through regulation of macrophages.
Ji-Ju WANG ; Da-Jin LI ; Mei-Rong DU
Acta Physiologica Sinica 2020;72(2):227-234
Adrenergic receptor (AR), one of the key receptors for nervous system, plays an important role in the immune microenvironment and the progression of many diseases. In recent years, the regulation of ARs and its signal on macrophages has become a research hotspot. Researchers found that ARs could exert different regulatory functions on macrophages in different microenvironments, which in turn affects occurrence and development of diseases such as tumor, heart failure, obesity, acute injury, infection and pregnancy-related diseases. This review summarizes the expression and functional regulation of ARs on macrophages, and the role of ARs in microenvironment of related diseases, which might provide new ideas for the treatments.
Disease
;
Humans
;
Macrophages
;
physiology
;
Receptors, Adrenergic
;
physiology
;
Signal Transduction

Result Analysis
Print
Save
E-mail