1.The role of iron-uptake factor PiuB in pathogenicity of soybean pathogen Xanthomonas axonopodis pv. glycines.
Ruyi SU ; Luojia JIN ; Jiangling XU ; Huiya GENG ; Xiao CHEN ; Siyi LIN ; Wei GUO ; Zhiyuan JI
Chinese Journal of Biotechnology 2024;40(1):177-189
Iron is an essential element for living organisms that plays critical roles in the process of bacterial growth and metabolism. However, it remains to be elucidated whether piuB encoding iron-uptake factor is involved in iron uptake and pathogenicity of Xanthomonas axonopodis pv. glycines (Xag). To investigate the function of piuB, we firstly generated a piuB deletion mutant (ΔpiuB) by homologous recombination. Compared with the wild-type, the piuB mutant exhibited significantly reduced growth and virulence in host soybean. The mutant displayed markedly increased siderophore secretory volume, and its sensitivity to Fe3+, Cu2+, Zn2+ and Mn2+ was significantly enhanced. Additionally, the H2O2 resistance, exopolysaccharide yield, biofilm formation, and cell mobility of ΔpiuB were significantly diminished compared to that of the wild-type. The addition of exogenous Fe3+ cannot effectively restore the above characteristics of ΔpiuB. However, expressing piuB in trans rescued the properties lost by ΔpiuB to the levels in the wild-type. Taken together, our results demonstrated that PiuB is a potential factor for Xag to assimilate Fe3+, and is necessary for Xag to be pathogenic in host soybean.
Iron
;
Glycine max
;
Virulence
;
Xanthomonas axonopodis/genetics*
;
Hydrogen Peroxide
2.Asperuloside Promotes Apoptosis of Cervical Cancer Cells through Endoplasmic Reticulum Stress-Mitochondrial Pathway.
Zhi-Min QI ; Xia WANG ; Xia LIU ; Juan ZHAO
Chinese journal of integrative medicine 2024;30(1):34-41
OBJECTIVE:
To investigate the effects of asperuloside on cervical cancer based on endoplasmic reticulum (ER) stress and mitochondrial pathway.
METHODS:
Different doses (12.5-800 µg/mL) of asperuloside were used to treat cervical cancer cell lines Hela and CaSki to calculate the half maximal inhibitory concentration (IC50) of asperuloside. The cell proliferation was analyzed by clone formation assay. Cell apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by flow cytometry. The protein expressions of cleaved-caspase-3, Bcl-2, Bax, Cyt-c, cleaved-caspase-4 and glucose-regulated protein 78 (GRP78) were analyzed by Western blot. And the inhibitor of ER stress, 4-phenyl butyric acid (4-PBA) was used to treat cervical cancer cells to further verify the role of ER stress in the apoptosis of cervical cancer cells induced by asperuloside.
RESULTS:
Asperuloside of 325, 650, and 1300 µg/mL significantly inhibited the proliferation and promoted apoptosis of Hela and CaSki cells (P<0.01). All doses of asperuloside significantly increased intracellular ROS levels, reduced mitochondrial membrane potential, significantly reduced Bcl-2 protein expression level, and increased Bax, Cyt-c, GRP78 and cleaved-caspase-4 expressions (P<0.01). In addition, 10 mmol/L 4-PBA treatment significantly promoted cell proliferation and reduced apoptosis (P<0.05), and 650 µg/mL asperuloside could reverse 4-PBA-induced increased cell proliferation, decreased apoptosis and cleaved-caspase-3, -4 and GRP78 protein expressions (P<0.05).
CONCLUSION
Our study revealed the role of asperuloside in cervical cancer, suggesting that asperuloside promotes apoptosis of cervical cancer cells through ER stress-mitochondrial pathway.
Female
;
Humans
;
Uterine Cervical Neoplasms/metabolism*
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Endoplasmic Reticulum Chaperone BiP
;
HeLa Cells
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Endoplasmic Reticulum Stress
;
Cell Line, Tumor
3.Discovery of proqodine A derivatives with antitumor activity targeting NAD(P)H: quinone oxidoreductase 1 and nicotinamide phosphoribosyltransferase.
Jiangzhou SONG ; Guiqing ZOU ; Zhou ZHAO ; Ya ZHU ; Jiayu XUE ; Lanjia AO ; Huiyong SUN ; Haiping HAO ; Bo ZHANG ; Xiaowei XU
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):75-88
NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavin protease highly expressed in various cancer cells. NQO1 catalyzes a futile redox cycle in substrates, leading to substantial reactive oxygen species (ROS) production. This ROS generation results in extensive DNA damage and elevated poly (ADP-ribose) polymerase 1 (PARP1)-mediated consumption of nicotinamide adenine dinucleotide (NAD+), ultimately causing cell death. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage synthesis pathway, emerges as a critical target in cancer therapy. The concurrent inhibition of NQO1 and NAMPT triggers hyperactivation of PARP1 and intensive NAD+ depletion. In this study, we designed, synthesized, and assessed a novel series of proqodine A derivatives targeting both NQO1 and NAMPT. Among these, compound T8 demonstrated potent antitumor properties. Specifically, T8 selectively inhibited the proliferation of MCF-7 cells and induced apoptosis through mechanisms dependent on both NQO1 and NAMPT. This discovery offers a promising new molecular entity for advancing anticancer research.
Humans
;
NAD/metabolism*
;
Cell Line, Tumor
;
Reactive Oxygen Species/metabolism*
;
Nicotinamide Phosphoribosyltransferase/metabolism*
;
Cytokines/metabolism*
;
Quinones
;
Oxidoreductases
4.Effect of Shao's five-needle therapy pretreatment on airway inflammatory response in asthmatic rats based on ROS/TXNIP/NLRP3 pathway.
Jia-Jia GONG ; Fang CHEN ; You-Ya ZHANG ; Jia-Xin FENG ; Jin-Shuang HUA
Chinese Acupuncture & Moxibustion 2023;43(11):1287-1292
OBJECTIVES:
To explore the possible mechanism of Shao's five-needle therapy pretreatment on relieving airway inflammatory response in asthmatic rats.
METHODS:
Forty SPF-grade SD rats were randomly divided into a blank group, a model group, an acupuncture group, and a medication group, with 10 rats in each group. Except the blank group, asthma model was established by aerosol inhalation of ovalbumin in the other 3 groups. The rats in the acupuncture group were treated with acupuncture at "Dazhui" (GV 14) and bilateral "Feishu" (BL 13) and "Fengmen" (BL 12), with each session lasting for 20 min. Acupuncture was given before each motivating, once daily for 7 consecutive days. The rats in the medication group were treated with intraperitoneal injection of dexamethasone sodium phosphate solution before each motivating, once daily for 7 days. General situation of the rats was observed in each group; ELISA method was used to detect the levels of inflammatory cytokines interleukin (IL)-1β and IL-18 in serum; immunofluorescence staining method was performed to assess the expression of reactive oxygen species (ROS) in lung tissues; Western blot method was used to measure the protein expression of thioredoxin interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 in lung tissues.
RESULTS:
The rats in the blank group exhibited normal behavior, while those in the model group showed signs of respiratory distress, ear scratching, cheek rubbing, and dysphoria. Compared with the model group, the rats in the acupuncture group and the medication group showed stable respiration and relatively agile responses. Compared with those in the blank group, the serum levels of IL-18 and IL-1β were elevated (P<0.01), the expression intensity of ROS was increased, and the protein expressions of TXNIP, NLRP3, ASC and Caspase-1 in lung tissues were increased (P<0.01) in the model group. Compared with those in the model group, the serum levels of IL-18 and IL-1β were reduced (P<0.01), the expression intensity of ROS was lowered, and the protein expressions of TXNIP, NLRP3, ASC and Caspase-1 in lung tissues were reduced (P<0.01) in the acupuncture group and the medication group. Compared with the medication group, the protein expression of ASC in lung tissue was reduced in the acupuncture group (P<0.05).
CONCLUSIONS
Pretreatment of Shao's five-needle therapy could alleviate airway inflammatory response in asthmatic rats by reducing ROS levels and decreasing the aggregation and activation of pathway-related proteins in the ROS/TXNIP/NLRP3 pathway, ultimately leading to decreased secretion of IL-1β and IL-18. This mechanism may contribute to the effectiveness of Shao's five-needle therapy in preventing and treating asthma.
Rats
;
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Interleukin-18/metabolism*
;
NLR Proteins
;
Rats, Sprague-Dawley
;
Asthma/metabolism*
;
Caspases
;
Cell Cycle Proteins
5.Isoliquiritigenin induces HMOX1 and GPX4-mediated ferroptosis in gallbladder cancer cells.
Zeyu WANG ; Weijian LI ; Xue WANG ; Qin ZHU ; Liguo LIU ; Shimei QIU ; Lu ZOU ; Ke LIU ; Guoqiang LI ; Huijie MIAO ; Yang YANG ; Chengkai JIANG ; Yong LIU ; Rong SHAO ; Xu'an WANG ; Yingbin LIU
Chinese Medical Journal 2023;136(18):2210-2220
BACKGROUND:
Gallbladder cancer (GBC) is the most common malignant tumor of biliary tract. Isoliquiritigenin (ISL) is a natural compound with chalcone structure extracted from the roots of licorice and other plants. Relevant studies have shown that ISL has a strong anti-tumor ability in various types of tumors. However, the research of ISL against GBC has not been reported, which needs to be further investigated.
METHODS:
The effects of ISL against GBC cells in vitro and in vivo were characterized by cytotoxicity test, RNA-sequencing, quantitative real-time polymerase chain reaction, reactive oxygen species (ROS) detection, lipid peroxidation detection, ferrous ion detection, glutathione disulphide/glutathione (GSSG/GSH) detection, lentivirus transfection, nude mice tumorigenesis experiment and immunohistochemistry.
RESULTS:
ISL significantly inhibited the proliferation of GBC cells in vitro . The results of transcriptome sequencing and bioinformatics analysis showed that ferroptosis was the main pathway of ISL inhibiting the proliferation of GBC, and HMOX1 and GPX4 were the key molecules of ISL-induced ferroptosis. Knockdown of HMOX1 or overexpression of GPX4 can reduce the sensitivity of GBC cells to ISL-induced ferroptosis and significantly restore the viability of GBC cells. Moreover, ISL significantly reversed the iron content, ROS level, lipid peroxidation level and GSSG/GSH ratio of GBC cells. Finally, ISL significantly inhibited the growth of GBC in vivo and regulated the ferroptosis of GBC by mediating HMOX1 and GPX4 .
CONCLUSION
ISL induced ferroptosis in GBC mainly by activating p62-Keap1-Nrf2-HMOX1 signaling pathway and down-regulating GPX4 in vitro and in vivo . This evidence may provide a new direction for the treatment of GBC.
Animals
;
Mice
;
Carcinoma in Situ
;
Chalcones/pharmacology*
;
Ferroptosis
;
Gallbladder Neoplasms/genetics*
;
Glutathione Disulfide
;
Kelch-Like ECH-Associated Protein 1
;
Mice, Nude
;
NF-E2-Related Factor 2/genetics*
;
Reactive Oxygen Species
;
Humans
7.Research progress on the effect of mitochondrial and endoplasmic reticulum stress caused by hypoxia during pregnancy on preeclampsia and intrauterine growth restriction.
Hui-Fang LIU ; Ri-Li GE ; Ta-Na WUREN
Acta Physiologica Sinica 2023;75(5):714-726
Preeclampsia and intrauterine growth restriction (IUGR) of the fetus are the two most common pregnancy complications worldwide, affecting 5%-10% of pregnant women. Preeclampsia is associated with significantly increased maternal and fetal morbidity and mortality. Hypoxia-induced uteroplacental dysfunction is now recognized as a key pathological factor in preeclampsia and IUGR. Reduced oxygen supply (hypoxia) disrupts mitochondrial and endoplasmic reticulum (ER) function. Hypoxia has been shown to alter mitochondrial reactive oxygen species (ROS) homeostasis and induce ER stress. Hypoxia during pregnancy is associated with excessive production of ROS in the placenta, leading to oxidative stress. Oxidative stress occurs in a number of human diseases, including high blood pressure during pregnancy. Studies have shown that uterine placental tissue/cells in preeclampsia and IUGR show high levels of oxidative stress, which plays an important role in the pathogenesis of both the complications. This review summarizes the role of hypoxia-induced mitochondrial oxidative stress and ER stress in the pathogenesis of preeclampsia/IUGR and discusses the potential therapeutic strategies targeting oxidative stress to treat both the pregnancy complications.
Pregnancy
;
Female
;
Humans
;
Placenta
;
Fetal Growth Retardation/etiology*
;
Pre-Eclampsia/pathology*
;
Reactive Oxygen Species
;
Hypoxia/pathology*
;
Pregnancy Complications/pathology*
;
Endoplasmic Reticulum Stress
8.Manipulation of isocitrate dehydrogenase genes affects the anti-autolytic ability of lager yeast.
Kejia YE ; Haobo WU ; Chunfeng LIU ; Chengtuo NIU ; Feiyun ZHENG ; Qi LI ; Jinjing WANG
Chinese Journal of Biotechnology 2023;39(8):3451-3463
Yeast autolysis affects the flavor and quality of beer. The regulation of yeast autolysis is a need for industrial beer production. Previous studies on brewer's yeast autolysis showed that the citric acid cycle-related genes had a great influence on yeast autolysis. To explore the contribution of isocitrate dehydrogenase genes in autolysis, the IDP1 and IDP2 genes were destroyed or overexpressed in typical lager yeast Pilsner. The destruction of IDP1 gene improved the anti-autolytic ability of yeast, and the anti-autolytic index after 96 h autolysis was 8.40, 1.5 times higher than that of the original strain. The destruction of IDP1 gene increased the supply of nicotinamide adenine dinucleotide phosphate (NADPH) and the NADPH/NADP+ ratio was 1.94. After fermentation, intracellular ATP level was 1.8 times higher than that of the original strain, while reactive oxygen species (ROS) was reduced by 10%. The destruction of IDP2 gene resulted in rapid autolysis and a decrease in the supply of NADPH. Anti-autolytic index after 96 h autolysis was 4.03 and the NADPH/NADP+ ratio was 0.89. After fermentation, intracellular ATP level was reduced by 8% compared with original strain, ROS was 1.3 times higher than that of the original strain. The results may help understand the regulation mechanism of citric acid cycle-related genes on yeast autolysis and provide a basis for the selection of excellent yeast with controllable anti-autolytic performance.
Humans
;
Isocitrate Dehydrogenase/genetics*
;
NADP
;
Reactive Oxygen Species
;
Autolysis
;
Adenosine Triphosphate
9.Effect of mitophagy related genes on the antioxidant properties of Saccharomyces cerevisiae.
Wanqi CHENG ; Qianyao HOU ; Chunfeng LIU ; Chengtuo NIU ; Feiyun ZHENG ; Qi LI ; Jinjing WANG
Chinese Journal of Biotechnology 2023;39(8):3464-3480
Mitophagy is a process whereby cells selectively remove mitochondria through the mechanism of autophagy, which plays an important role in maintaining cellular homeostasis. In order to explore the effect of mitophagy genes on the antioxidant activities of Saccharomyces cerevisiae, mutants with deletion or overexpression of mitophagy genes ATG8, ATG11 and ATG32 were constructed respectively. The results indicated that overexpression of ATG8 and ATG11 genes significantly reduced the intracellular reactive oxygen species (ROS) content upon H2O2 stress for 6 h, which were 61.23% and 46.35% of the initial state, respectively. Notable, overexpression of ATG8 and ATG11 genes significantly increased the mitochondrial membrane potential (MMP) and ATP content, which were helpful to improve the antioxidant activities of the strains. On the other hand, deletion of ATG8, ATG11 and ATG32 caused mitochondrial damage and significantly decreased cell vitality, and caused the imbalance of intracellular ROS. The intracellular ROS content significantly increased to 174.27%, 128.68%, 200.92% of the initial state, respectively, upon H2O2 stress for 6 h. The results showed that ATG8, ATG11 and ATG32 might be potential targets for regulating the antioxidant properties of yeast, providing a new clue for further research.
Mitophagy/genetics*
;
Saccharomyces cerevisiae/genetics*
;
Antioxidants
;
Hydrogen Peroxide/pharmacology*
;
Reactive Oxygen Species
10.Heixiaoyao Powder interferes with microglia polarization in AD model mice by regulating NOX2/ROS/NF-κB signaling pathway.
Ming-Cheng LI ; Jun ZHOU ; Yun-Yun HU ; Zhi-Peng MENG ; Yu-Jie LYU ; Hu-Ping WANG
China Journal of Chinese Materia Medica 2023;48(15):4027-4038
The effect and mechanism of Heixiaoyao Powder on the polarization of microglia(MG) in APP/PS1 double transgenic mice were explored based on NADPH oxidase 2(NOX2)/reactive oxygen species(ROS)/nuclear factor kappaB(NF-κB) signaling pathway. Fifty 4-month-old male APP/PS1 mice were randomly divided into a model group, an MCC950 group(10 mg·kg~(-1)), and low-, medium-, and high-dose Heixiaoyao Powder groups(6.45, 12.89, and 25.78 g·kg~(-1)). Thirty male C57BL/6J mice of the same age and strain were randomly divided into a blank group, a blank + intragastric intervention group, and a blank + intraperitoneal injection group. Drug intervention lasted 90 days. Morris water maze test was used to detect learning and cognitive ability. Nissl staining and transmission electron microscopy were used to observe the pathological morphology and ultrastructure of hippocampal neurons. Immunofluorescence was used to detect the positive expression of M1-type marker CD16/32~+/Iba-1~+, M2-type marker CD206~+/Iba-1~+ of MG and the expression of hippocampal ROS. The colorimetric method was used to detect the content of malondialdehyde(MDA) and superoxide dismutase(SOD) in the hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory factors, including interleukin-6(IL-6), interleukin-8(IL-8), and tumor necrosis factor-α(TNF-α), in the hippocampus. Western blot was used to detect the protein expression of β-amyloid protein(Aβ), Iba-1, CD16/32, CD206, NOX2, NF-κB, p-NF-κB, NF-κB inhibitor alpha(IκBα), and p-IKBα in the hippocampus. The results showed that as compared with the blank group, the model group showed prolonged target quadrant movement distance and escape latency(P<0.01), shortened target quadrant retention time and percentage(P<0.01), disorganized neuronal cells with swelling, nuclear disappearance or bias, reduced number of cells, dissolved or absent Nissl bodies, and a clear area in the cytoplasm, damaged and shrunk cell membrane with abnormal cell morphology, few organelles in the cytoplasm, reduced and swollen mitochondria, increased MG M1-type marker CD16/32~+/Iba-1~+(P<0.01), decreased M2-type marker CD206~+/Iba-1~+(P<0.01), increased ROS activity and MDA content(P<0.01), decreased SOD level(P<0.01), elevated inflammatory factors IL-6, IL-8, and TNF-α(P<0.01), up-regulated protein expression and phosphorylation of Aβ, CD16/32, Iba-1, NOX2, NF-κB, and IKBα(P<0.01), and down-regulated CD206(P<0.01). There was no statistically significant difference between the blank group, the blank + intragastric intervention group, and the blank + intraperitoneal injection group. After the intervention of Heixiaoyao Powder, the Heixiaoyao Powder groups showed shortened target quadrant movement distance and escape latency(P<0.01), prolonged target quadrant retention time and percentage(P<0.01), increased and neatly arranged cells with relieved swelling, increased Nissl bodies, regular cell morphology, and intact cell membrane, relieved swelling of mitochondria, slightly expanded endoplasmic reticulum, decreased CD16/32~+/Iba-1~+(P<0.05 or P<0.01), increased CD206~+/Iba-1~+(P<0.01), decreased ROS activity and MDA content(P<0.01), increased SOD level(P<0.01), decreased content of inflammatory factors IL-6, IL-8, and TNF-α(P<0.01), down-regulated protein expression and phosphorylation of Aβ, CD16/32, Iba-1, NOX2, NF-κB, and IKBα(P<0.01), and up-regulated CD206(P<0.01). In conclusion, Heixiaoyao Powder can alleviate neuronal damage and improve the learning and memory abilities of APP/PS1 mice. The mechanism of action may be related to the inhibition of NOX2/ROS/NF-κB signaling pathway, regulating the polarization of MG, increasing the expression of M2 type, inhibiting the expression of M1 type, and reducing the release of inflammatory factor.
Mice
;
Male
;
Animals
;
NF-kappa B/genetics*
;
Microglia
;
Reactive Oxygen Species
;
Interleukin-8
;
Powders
;
Tumor Necrosis Factor-alpha
;
Interleukin-6
;
Mice, Inbred C57BL
;
Signal Transduction
;
Mice, Transgenic
;
Superoxide Dismutase

Result Analysis
Print
Save
E-mail