1.Effects of Xihuang Pills on proliferation and apoptosis of prostate cancer LNCaP cells based on AR/m TOR signaling pathway.
Xin-Jun DAI ; Yan LONG ; Bo ZOU ; Li-Tong WU ; Jun-Feng QIU ; Yong-Rong WU ; Zhe DENG ; Yong-Li WANG ; Qing ZHOU ; Xue-Fei TIAN
China Journal of Chinese Materia Medica 2023;48(15):4147-4155
Based on the androgen receptor(AR)/mammalian target of rapamycin(mTOR)signaling pathway, the effects of Xihuang Pills-medicated serum on the proliferation and apoptosis of prostate cancer LNCaP cells were investigated. The drug-containing serum of SD rats was prepared by intragastric administration of Xihuang Pills suspension. The effects of low-, medium-, and high-dose Xihuang Pills-containing serum on the in vitro proliferation of LNCaP cells were detected by cell counting kit-8(CCK-8). Flow cytometry was used to detect the apoptosis level of LNCaP cells after intervention with different concentrations of Xihuang Pills. Protein expression of cleaved cysteinyl aspartate-specific proteinase caspase-3(cleaved caspase-3), B-cell lymphoma-2(Bcl-2), and AR as well as the phosphorylation level of mTOR protein were detected by Western blot. The results showed that compared with the blank serum, the drug-medicated serum could blunt the activity of LNCaP cells. Low-, medium-, and high-dose Xihuang Pills-containing serum could significantly increase the cell apoptosis rate, increase the expression of cleaved caspase-3 protein, decrease the expression of Bcl-2 protein, reduce the expression of AR protein, and down-regulate the level of phosphorylated mTOR(p-mTOR). To study the effect of Xihuang Pills on the growth of LNCaP cells in vivo, different doses of Xihuang Pills were used to intervene in the subcutaneous graft model in nude mice inoculated with LNCaP cells. The expression levels of AR, mTOR, p-mTOR, Bcl-2, and cleaved caspase-3 were detected by Western blot. The results showed that the volumes of subcutaneous graft tumor in the low-dose, medium-dose, and high-dose Xihuang Pills groups significantly decreased compared with that in the model group. The weight of subcutaneous transplanted tumor in each group with drug intervention was significantly lower than that in the model group. Compared with the model group, the low-dose, medium-dose, and high-dose Xihuang Pills groups showed increased cleaved caspase-3 protein expression, decreased Bcl-2 and AR protein expression, and reduced p-mTOR protein expression. Further experiments showed that AR agonist R1881 could block the anti-proliferation and pro-apoptotic effects of Xihuang Pills. The mechanism of Xihuang Pills against prostate cancer is related to the inhibition of the AR/mTOR signaling pathway, inhibition of LNCaP cell proliferation, and induction of apoptosis in cancer cells.
Humans
;
Male
;
Mice
;
Rats
;
Animals
;
Caspase 3/metabolism*
;
Mice, Nude
;
Cell Line, Tumor
;
Rats, Sprague-Dawley
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Prostatic Neoplasms/pathology*
;
Cell Proliferation
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Mammals/metabolism*
2.Effects of porcine acellular dermal matrix combined with human epidermal stem cells on wound healing of full-thickness skin defect in nude mice.
Xiao Hong ZHAO ; Yu Cheng GUO ; Hong Hao CHEN ; Xue LI ; Ying WANG ; Wen Qiang NI ; Meng Qiu XING ; Rui ZHANG ; Shi Cang YU ; Yin Gen PAN ; Ri Xing ZHAN ; Gao Xing LUO
Chinese Journal of Burns 2022;38(1):45-56
Objective: To explore the effects of porcine acellular dermal matrix (ADM) combined with human epidermal stem cells (ESCs) on wound healing of full-thickness skin defect in nude mice. Methods: The morphology of porcine ADM was analyzed by photograph of digital camera, the cell residues in porcine ADM were observed by hematoxylin-eosin (HE) staining, the surface structure of porcine ADM was observed by scanning electron microscope, the secondary structure of porcine ADM was analyzed by infrared spectrometer, the porcine ADM particle size was analyzed by dynamic light scattering particle size analyzer, and the porcine ADM potential was analyzed by nano-particle size potentiometer. The morphology of porcine ADM was observed by inverted fluorescence microscope when it was placed in culture medium for 30 min, 1 d, and 5 d (n=2). The porcine ADM was divided into 5 min group, 10 min group, 20 min group, 30 min group, 60 min group, and 120 min group according to the random number table (the same grouping method below) in static state at normal temperature for the corresponding time to calculate the water absorption by weighing method (n=3). Swiss white mouse embryonic fibroblasts (Fbs) were divided into blank control group (culture medium only), and 50.0 g/L ADM extract group, 37.5 g/L ADM extract group, 25.0 g/L ADM extract group, 12.5 g/L ADM extract group, and 6.5 g/L ADM extract group which were added with the corresponding final concentrations of ADM extract respectively. At post culture hour (PCH) 24, 48, and 72, the cell survival rate was detected by cell counting kit 8 and the cytotoxicity was graded (n=5). The erythrocytes of a 6-week-old male Sprague-Dawley male rat were divided into normal saline group, ultra-pure water group, and 5 mg/mL ADM extract group, 10 mg/mL ADM extract group, and 15 mg/mL ADM extract group which were treated with the corresponding final concentrations of porcine ADM extract respectively. After reaction for 3 h, the absorbance value of hemoglobin was detected by microplate reader to represent the blood compatibility of porcine ADM (n=3). ESCs were isolated and cultured from the discarded prepuce of a 6-year-old healthy boy who was treated in the Department of Urology of the First Affiliated Hospital of Army Medical University (the Third Military Medical University) in July 2020, and then identified by flow cytometry. The porcine ADM particles of composite ESC (hereinafter referred to as ESC/ADM) were constructed by mixed culture. After 3 days of culture, the composite effect of ESC/ADM was observed by HE staining and laser scanning confocal microscope. Thirty-six 7-8-week-old male non-thymic nude mice were divided into phosphate buffer solution (PBS) alone group, ADM alone group, ESC alone group, and ESC/ADM group, with 9 mice in each group, and the wound model of full-thickness skin defect was established. Immediately after injury, the wounds were treated with the corresponding reagents at one time. On post injury day (PID) 1, 7, 11, and 15, the wound healing was observed and the wound healing rate was counted (n=3). On PID 7, the epithelialization of wounds was observed by HE staining and the length of un-epithelialized wound was measured (with this and the following sample numbers of 4). On PID 11, the dermal area and collagen deposition of wounds were observed by Masson staining and the dermal area of wound section was calculated, the number of cells expressing CD49f, a specific marker of ESC, was calculated with immunofluorescence staining, the mRNA expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in ESC after wound transplantation was detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction. Data were statistically analyzed with independent sample t test, one-way analysis of variance, analysis of variance for repeated measurement, and least significant difference t test. Results: The porcine ADM was white particles and composed of reticular structure, with no cells inside, disordered structure, and rough surface. The absorption peak of porcine ADM appeared at the wave numbers of 1 659, 1 549, and 1 239 cm-1, respectively. The main particle size distribution of porcine ADM in solution was 500 to 700 nm, with negative charge on the surface. The morphology of porcine ADM in static state at 30 min and on 1 and 5 d was relatively stable. The water absorption of porcine ADM remained relatively high level in static state from 30 min to 120 min. The cytotoxicity of mouse embryonic Fbs in 6.5 g/L ADM extract group, 12.5 g/L ADM extract group, and 25.0 g/L ADM extract group was grade 1 at PCH 24, and the cytotoxicity of the other groups was 0 grade at each time point. After reaction for 3 h, the absorbance value of hemoglobin of erythrocytes in ultra-pure water group was significantly higher than the values in normal saline group and 15 mg/mL ADM extract group (with t values of 8.14 and 7.96, respectively, P<0.01). After 3 days of culture, the cells of the fourth passage showed pebble-like morphology, with low expression of CD71 and high expression of CD49f, which were identified as ESCs. There was ESC attachment and growth on porcine ADM particles. On PID 1, the wound sizes of nude mice were almost the same in PBS alone group, ADM alone group, ESC alone group, and ESC/ADM group. On PID 7, 11, and 15, the wound contraction of nude mice in each group was observed, especially in ADM alone group, ESC alone group, and ESC/ADM group. On PID 7, the wound healing rates of nude mice in ESC alone group and ESC/ADM group were significantly higher than the rate in PBS alone group (with t values of 2.83 and 4.72 respectively, P<0.05 or P<0.01). On PID 11, the wound healing rate of nude mice in ESC/ADM group was significantly higher than that in PBS alone group (t=4.86, P<0.01). On PID 15, the wound healing rates of nude mice in ADM alone group, ESC alone group, and ESC/ADM group were significantly higher than the rate in PBS alone group (with t values of 2.71, 2.90, and 3.23 respectively, P<0.05). On PID 7, the length of un-epithelialized wound of nude mice in ADM alone group, ESC alone group, and ESC/ADM group was (816±85), (635±66), and (163±32) μm, respectively, which were significantly shorter than (1 199±43) μm in PBS alone group (with t values of 5.69, 10.19, and 27.54 respectively, P<0.01). On PID 11, the dermal areas of wound section of nude mice in ADM alone group, ESC alone group, and ESC/ADM group were significantly larger than the area in PBS alone group (with t values of 27.14, 5.29, and 15.90 respectively, P<0.01); the collagen production of nude mice in ADM alone group and ESC/ADM group was more obvious than that in PBS alone group, and the collagen production of nude mice in ESC alone group and PBS alone group was similar. On PID 11, in the wounds of nude mice in ESC alone group and ESC/ADM group, the cells with positive expression of CD49f were respectively 135±7 and 185±15, and the mRNA expressions of GAPDH were positive; while there were no expressions of CD49f nor mRNA of GAPDH in the wounds of nude mice in PBS alone group and ADM alone group. Conclusions: ESC/ADM particles can promote the wound healing of full-thickness skin defects in nude mice, which may be related to the improved survival rate of ESCs after transplantation and the promotion of dermal structure rearrangement and angiogenesis by ADM.
Acellular Dermis
;
Animals
;
Fibroblasts
;
Humans
;
Male
;
Mice
;
Mice, Nude
;
Rats
;
Rats, Sprague-Dawley
;
Stem Cells
;
Swine
;
Wound Healing
3.MAGI3 Suppresses Glioma Cell Proliferation via Upregulation of PTEN Expression.
Qian MA ; Yan ZHANG ; Ran MENG ; Kun Ming XIE ; Ying XIONG ; Song LIN ; Zong Lin K HE ; Tao TAO ; Ying YANG ; Ji Zong ZHAO ; Jun Qi HE
Biomedical and Environmental Sciences 2015;28(7):502-509
OBJECTIVETo investigate the role and molecular mechanism of membrane-associated guanylate kinase inverted 3 (MAGI3) in glioma cell proliferation.
METHODSThe expression levels of MAGI3 and PTEN were assessed in glioma samples by Western blotting. MAGI3 was stably transfected into C6 glioma cells to obtain C6-MAGI3 cells. Then, the proliferation, the expression levels of MAGI3 and PTEN, and Akt phosphorylation were evaluated in C6 and C6-MAGI3 cells. Xenograft tumor models were established by subcutaneous injection of C6 and C6-MAGI3 cells into nude mice, and the growth rates of xenografts in the mice were compared. The potential role of MAGI3 expression in PI3K/Akt signaling activation was further investigated by examining the correlation between MAGI3 expression and the expression of PI3K/Akt signaling downstream target genes in a glioma dataset using gene set enrichment analysis (GSEA).
RESULTSExpression levels of MAGI3 and PTEN were significantly downregulated in gliomas. Overexpression of MAGI3 in the glioma C6 cell line upregulated PTEN protein expression, inhibited the phosphorylation of Akt, and suppressed cell proliferation. MAGI3 overexpression also inhibited the growth of C6 glioma tumor xenografts in nude mice. Analysis based on the GEO database confirmed the negative correlation between activation of PI3K/Akt pathway and MAGI3 mRNA levels in human glioma samples.
CONCLUSIONThe loss of MAGI3 expression in glioma may enhance the proliferation of glioma cells via downregulation of PTEN expression, leading to the activation of the PI3K/Akt pathway. MAGI3 is a potential glioma suppressor.
Animals ; Brain Neoplasms ; genetics ; metabolism ; pathology ; Cell Line, Tumor ; Cell Proliferation ; genetics ; Down-Regulation ; Glioma ; genetics ; metabolism ; pathology ; Humans ; Membrane Proteins ; genetics ; metabolism ; Mice, Nude ; PTEN Phosphohydrolase ; genetics ; metabolism ; Phosphatidylinositol 3-Kinases ; metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt ; metabolism ; Rats ; Signal Transduction ; Transfection ; Up-Regulation ; Xenograft Model Antitumor Assays
4.Improved anti-tumor efficiency against prostate cancer by docetaxel-loaded PEG-PCL micelles.
Ming-ji JIN ; Sheng-jun PIAO ; Tie-xiong JIN ; Zhe-hu JIN ; Xue-zhe YIN ; Zhong-gao GAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):66-75
This study primarily focused on the systematic assessment of both in vitro and in vivo anti-tumor effects of docetaxel-loaded polyethylene glycol (PEG)2000-polycaprolactone (PCL)2600 micelles on hormone-refractory prostate cancer (HRPC). By using solvent evaporation method, PEG-PCL was chosen to prepare doxetaxel (DTX)-loaded mPEG-PCL micelles (DTX-PMs), with the purpose of eliminating side effects of the commercial formulation (Tween 80) and prolonging the blood circulation time. The prepared DTX-PMs had an average particle size of 25.19±2.36 nm, a zeta potential of 0.64±0.15 mV, a polydispersity index of 0.56±0.03, a drug loading of (8.72±1.05)%, and an encapsulation efficiency of (98.1±8.4)%. In vitro cytotoxicity studies indicated that DTX-PMs could effectively kill LNCap-C4-2B cells and show a dose- and time-dependent efficacy. The hemolysis test showed that DTX-PMs had less hemocytolysis than the commercial product of Duopafei®. A sustained in vitro release behavior and prolonged circulation time in blood vessels were observed in the DTX-PMs. Furthermore, when compared with Duopafei®, the DTX-PMs dramatically reduced the prostate specific antigen (PSA) level and tumor growth of prostate tumor-bearing nude mice in vivo. In conclusion, the DTX-PMs can lower systemic side effects, improve anti-tumor activity with prolonged blood circulation time, and will bring an alternative to patients with HRPC.
Animals
;
Antineoplastic Agents
;
pharmacokinetics
;
pharmacology
;
Area Under Curve
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
Dose-Response Relationship, Drug
;
Guinea Pigs
;
Hemolysis
;
drug effects
;
Humans
;
Male
;
Mice
;
Mice, Nude
;
Micelles
;
Particle Size
;
Polyesters
;
chemistry
;
Polyethylene Glycols
;
chemistry
;
Prostatic Neoplasms
;
drug therapy
;
pathology
;
Rats
;
Rats, Sprague-Dawley
;
Taxoids
;
chemistry
;
pharmacokinetics
;
pharmacology
;
Treatment Outcome
;
Tumor Burden
;
drug effects
;
Xenograft Model Antitumor Assays
5.The Effect of Poloxamer 407-Based Hydrogel on the Osteoinductivity of Demineralized Bone Matrix.
Jae Hyup LEE ; Hae Ri BAEK ; Kyung Mee LEE ; Hyun Kyung LEE ; Seung Bin IM ; Yong Sung KIM ; Ji Ho LEE ; Bong Soon CHANG ; Choon Ki LEE
Clinics in Orthopedic Surgery 2014;6(4):455-461
BACKGROUND: Demineralized bone matrix (DBM) is used for bone healing due to its osteoinductivity, but it requires a carrier for clinical application. Here, we report the effects on the osteoinductivity of DBM by use of a poloxamer 407-based hydrogel as the carrier, compared to sterile water. METHODS: DBM-W and DBM-H represent 27 wt% of DBM with sterile water and DBM with a poloxamer 407-based hydrogel, respectively. Both of the compositions were applied to human mesenchymal stem cell (MSC) cultures, and monitored for alkaline phosphatase (ALP) staining and ALP activity. Six 10-week-old athymic nude rats were used for abdominal muscle grafting with either DBM-W or DBM-H, and were tested by plane radiography, microfocus X-ray computed tomography (CT), and decalcified histology to evaluate ectopic bone formation. RESULTS: The DBM-W group showed stronger ALP staining at 7, 14, and 21 days of treatment, and significantly higher ALP activity at 7 and 14 days of treatment, compared to the DBM-H group. Plane radiography could not confirm the radio-opaque lesions in the rat ectopic bone formulation model. However, ectopic bone formation was observed in both groups by micro-CT. Compared to the DBM-H group, the DBM-W group showed higher bone volume, percent bone volume and trabecular number, and the difference in percent bone volume was statistically significant. Decalcified histology found bony tissue with lamellation in both groups. CONCLUSIONS: Our results suggest that poloxamer 407-based hydrogel has efficacy as a DBM carrier since it shows ectopic bone formation, but its effects on the quality and quantity of osteoblastic differentiation in rat abdominal ectopic bone and MSC are considered negative.
Animals
;
Bone Matrix/*physiology
;
Cell Culture Techniques
;
Decalcification Technique
;
Excipients/*pharmacology
;
Hydrogels/pharmacology
;
Male
;
Mesenchymal Stromal Cells/*drug effects
;
Osteogenesis/*drug effects
;
Poloxamer/*pharmacology
;
Rats
;
Rats, Nude
6.Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments.
Shulian HOU ; Huantong XIE ; Wei CHEN ; Guangxin WANG ; Qiang ZHAO ; Shiyu LI
Journal of Biomedical Engineering 2014;31(5):1023-1030
In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.
Animals
;
Magnetic Fields
;
Magnetic Resonance Imaging
;
instrumentation
;
Magnets
;
Mice
;
Mice, Nude
;
Phantoms, Imaging
;
Radio Waves
;
Rats
7.Translational Research: Palatal-derived Ecto-mesenchymal Stem Cells from Human Palate: A New Hope for Alveolar Bone and Cranio-Facial Bone Reconstruction.
Wolf Dieter GRIMM ; Aous DANNAN ; Bernd GIESENHAGEN ; Ingmar SCHAU ; Gabor VARGA ; Mark Alexander VUKOVIC ; Sergey Vladimirovich SIRAK
International Journal of Stem Cells 2014;7(1):23-29
The management of facial defects has rapidly changed in the last decade. Functional and esthetic requirements have steadily increased along with the refinements of surgery. In the case of advanced atrophy or jaw defects, extensive horizontal and vertical bone augmentation is often unavoidable to enable patients to be fitted with implants. Loss of vertical alveolar bone height is the most common cause for a non primary stability of dental implants in adults. At present, there is no ideal therapeutic approach to cure loss of vertical alveolar bone height and achieve optimal pre-implantological bone regeneration before dental implant placement. Recently, it has been found that specific populations of stem cells and/or progenitor cells could be isolated from different dental resources, namely the dental follicle, the dental pulp and the periodontal ligament. Our research group has cultured palatal-derived stem cells (paldSCs) as dentospheres and further differentiated into various cells of the neuronal and osteogenic lineage, thereby demonstrating their stem cell state. In this publication will be shown whether paldSCs could be differentiated into the osteogenic lineage and, if so, whether these cells are able to regenerate alveolar bone tissue in vivo in an athymic rat model. Furthermore, using these data we have started a proof of principle clinical- and histological controlled study using stem cell-rich palatal tissues for improving the vertical alveolar bone augmentation in critical size defects. The initial results of the study demonstrate the feasibility of using stem cell-mediated tissue engineering to treat alveolar bone defects in humans.
Adult
;
Atrophy
;
Bone and Bones
;
Bone Regeneration
;
Dental Implants
;
Dental Pulp
;
Dental Sac
;
Hope*
;
Humans
;
Jaw
;
Neurons
;
Palate*
;
Periodontal Ligament
;
Publications
;
Rats, Nude
;
Stem Cells*
;
Tissue Engineering
;
Translational Medical Research*
8.Adipose-Derived Stem Cells Improve Efficacy of Melanocyte Transplantation in Animal Skin.
Won Suk LIM ; Chang Hyun KIM ; Ji Young KIM ; Byung Rok DO ; Eo Jin KIM ; Ai Young LEE
Biomolecules & Therapeutics 2014;22(4):328-333
Vitiligo is a pigmentary disorder induced by a loss of melanocytes. In addition to replacement of pure melanocytes, cocultures of melanocytes with keratinocytes have been used to improve the repigmentation outcome in vitiligo treatment. We previously identified by in vitro studies, that adipose-derived stem cells (ADSCs) could be a potential substitute for keratinocytes in cocultures with melanocytes. In this study, the efficacy of pigmentation including durability of grafted melanocytes and short-term safety was examined in the nude mouse and Sprague-Dawley rat after grafting of primary cultured human melanocytes, with or without different ratios of primary cultured human ADSCs. Simultaneous grafting of melanocytes and ADSCs, which were separately cultured and mixed on grafting at the ratios of 1:1, 1:2, or 1:3, showed better efficacy than that of pure melanocytes. Grafting of melanocytes cocultured with ADSCs resulted in a similar outcome as the grafting of cell mixtures. Skin pigmentation by melanocytes : ADSCs at the ratios of 1:1 and 1:2 was better than at 1:3. No significant difference was observed between the 1-week and 2-week durations in coculturing. Time-course microscopic examination showed that the grafted melanocytes remained a little longer than 6-week post-grafting. No inflammatory cell infiltration was observed in the grafted skin and no melanocytes were detectable in other organs. Collectively, grafting of melanocytes and ADSCs was equally safe and more effective than grafting of melanocytes alone. Despite the absence of significant differences in efficacy between the group of 1:1 and that of 1:2 ratio, 1:2 ratio for 1-week coculturing may be better for clinical use from the cost-benefit viewpoint.
Animals
;
Coculture Techniques
;
Humans
;
Keratinocytes
;
Melanocytes*
;
Mice
;
Mice, Nude
;
Pigmentation
;
Rats
;
Rats, Sprague-Dawley
;
Skin Pigmentation
;
Skin*
;
Stem Cells*
;
Transplants
;
Vitiligo
9.Establishment and characterization of dual-color fluorescence nude mouse models of glioma.
Jinshi ZHANG ; Zhaohui LU ; Xifeng FEI ; Xingliang DAI ; Jinding WU ; Yi WAN ; Zhimin WANG ; Aidong WANG ; Jun DONG ; Qing LAN ; Qiang HUANG
Chinese Journal of Oncology 2014;36(2):97-102
OBJECTIVETo establish red-green dual-color fluorescence glioma model in nude mice and to explore its practical values.
METHODSCM-DiI-stained rat glioma C6 cells (C6-CM- DiI cells) expressing red fluorescence were inoculated into the brain of athymic nude mice expressing green fluorescence protein (NC-C57BL/6J-EGFP). Then the whole-body dual-color fluorescence imaging was detected dynamically. Finally whole brains of the tumor-bearing mice were removed and 5 µm thick serial frozen slices were made. Light microscopy, fluorescence microscopy and confocal laser scanning microscopy were performed to observe the transplanted tumor tissue structure and fluorescent cells.
RESULTSTumor mass with red fluorescence increased gradually under continuous in-vivo fluorescence imaging monitoring. Under the fluorescence microscope, cells with red, green and yellow fluorescence were observed in the frozen sections of transplanted tumor tissue and the mutual structural relationship among them could be defined. The tumor cells migration, implantation and cell fusion between transplanted tumor cells and host cells could be observed. It could be distinguished according to the fluorescence, that blood vessels of tumor-origin displayed red fluorescence, blood vessels of host-origin displayed green fluorescence and mosaic blood vessels appeared yellow fluorescence. It was depicted that host innate astrocytes and oligodendrocytes in the microenvironment at the tumor periphery could be activated and dedifferentiated into nestin-positive cells.
CONCLUSIONSIn contrast to traditional animal model, the dual-color fluorescence imaging of nude mouse models of glioma possesses enormous advantages in investigating tumor mass in-vivo fluorescence imaging, tumor cells migration and metastasis, tumor angiogenesis and reactive activation of host innate cells in the microenvironment at tumor periphery, thus, has highly practical application value.
Animals ; Astrocytes ; metabolism ; Brain Neoplasms ; blood supply ; metabolism ; pathology ; ultrastructure ; Carbocyanines ; metabolism ; Cell Fusion ; Cell Line, Tumor ; Cell Movement ; Disease Models, Animal ; Fluorescent Dyes ; metabolism ; Glioma ; blood supply ; metabolism ; pathology ; ultrastructure ; Green Fluorescent Proteins ; metabolism ; Luminescent Proteins ; metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Microscopy, Confocal ; Microscopy, Fluorescence ; Neoplasm Transplantation ; Neovascularization, Pathologic ; Nestin ; metabolism ; Oligodendroglia ; metabolism ; Rats
10.Subcurative radiation significantly increases cell proliferation, invasion, and migration of primary glioblastoma multiforme in vivo.
Adarsh SHANKAR ; Sanath KUMAR ; A S M ISKANDER ; Nadimpalli R S VARMA ; Branislava JANIC ; Ana DECARVALHO ; Tom MIKKELSEN ; Joseph A FRANK ; Meser M ALI ; Robert A KNIGHT ; Stephen BROWN ; Ali S ARBAB
Chinese Journal of Cancer 2014;33(3):148-158
Tumor cell proliferation, infiltration, migration, and neovascularization are known causes of treatment resistance in glioblastoma multiforme (GBM). The purpose of this study was to determine the effect of radiation on the growth characteristics of primary human GBM developed in a nude rat. Primary GBM cells grown from explanted GBM tissues were implanted orthotopically in nude rats. Tumor growth was confirmed by magnetic resonance imaging on day 77 (baseline) after implantation. The rats underwent irradiation to a dose of 50 Gy delivered subcuratively on day 84 postimplantation (n = 8), or underwent no radiation (n = 8). Brain tissues were obtained on day 112 (nonirradiated) or day 133 (irradiated). Immunohistochemistry was performed to determine tumor cell proliferation (Ki-67) and to assess the expression of infiltration marker (matrix metalloproteinase-2, MMP-2) and cell migration marker (CD44). Tumor neovascularization was assessed by microvessel density using von-Willebrand factor (vWF) staining. Magnetic resonance imaging showed well-developed, infiltrative tumors in 11 weeks postimplantation. The proportion of Ki-67-positive cells in tumors undergoing radiation was (71 +/- 15)% compared with (25 +/- 12)% in the nonirradiated group (P = 0.02). The number of MMP-2-positive areas and proportion of CD44-positive cells were also high in tumors receiving radiation, indicating great invasion and infiltration. Microvessel density analysis did not show a significant difference between nonirradiated and irradiated tumors. Taken together, we found that subcurative radiation significantly increased proliferation, invasion, and migration of primary GBM. Our study provides insights into possible mechanisms of treatment resistance following radiation therapy for GBM.
Animals
;
Brain Neoplasms
;
metabolism
;
pathology
;
radiotherapy
;
Cell Line, Tumor
;
Cell Movement
;
radiation effects
;
Cell Proliferation
;
radiation effects
;
Female
;
Glioblastoma
;
metabolism
;
pathology
;
radiotherapy
;
Humans
;
Hyaluronan Receptors
;
metabolism
;
Immunohistochemistry
;
Ki-67 Antigen
;
metabolism
;
Magnetic Resonance Imaging
;
Matrix Metalloproteinase 2
;
metabolism
;
Microvessels
;
pathology
;
Neoplasm Transplantation
;
Neovascularization, Pathologic
;
pathology
;
Radiation Tolerance
;
Radiotherapy, High-Energy
;
Rats
;
Rats, Nude

Result Analysis
Print
Save
E-mail