1.Analysis of Imaging Performance Standards of CBCT X-IGRT System Used in Radiotherapy.
Shibing XIE ; Peichen WANG ; Chunying JIAO ; Chengxin LIANG ; Xintao ZHANG ; Jiajie XIE
Chinese Journal of Medical Instrumentation 2023;47(6):608-611
This article briefly describes the imaging performance standards of the kilovolt X-ray image guidance system used in radiotherapy, analyzes the main aspects that should be considered in the image quality of X-IGRT system, and focuses on parameters that should be considered in the imaging performance evaluation criteria of the CBCT X-IGRT. The purpose is to sort out the imaging performance evaluation standards of kilovolt X-IGRT system, clarify the image quality requirements of X-IGRT equipment, and reach a consensus when evaluating the imaging performance of X-IGRT system.
Radiotherapy Planning, Computer-Assisted/methods*
;
Cone-Beam Computed Tomography/methods*
;
Spiral Cone-Beam Computed Tomography
;
Radiotherapy, Intensity-Modulated/methods*
;
Radiotherapy, Image-Guided/methods*
2.Application of PET-LINAC in Biology-guided Radiotherapy.
Xin YANG ; Wei ZHAO ; Xinzhi TIAN ; Jun CAI ; Siwei XIE ; Qi LIU ; Hao PENG ; Qiyu PENG
Chinese Journal of Medical Instrumentation 2023;47(3):237-241
Biology-guided radiotherapy (BgRT) is a novel technique of external beam radiotherapy, combining positron emission tomography-computed tomography (PET-CT) with a linear accelerator (LINAC). The key innovation is to utilize PET signals from tracers in tumor tissues for real-time tracking and guiding beamlets. Compared with a traditional LINAC system, a BgRT system is more complex in hardware design, software algorithm, system integration and clinical workflow. RefleXion Medical has developed the world's first BgRT system. Nevertheless, its actively advertised function, PET-guided radiotherapy, is still in the research and development phase. In this review study, we presented a number of issues related to BgRT, including its technical advantages and potential challenges.
Positron Emission Tomography Computed Tomography
;
Radiotherapy Planning, Computer-Assisted/methods*
;
Algorithms
;
Particle Accelerators
;
Biology
;
Radiotherapy, Image-Guided/methods*
;
Radiotherapy Dosage
3.Advances in magnetic resonance imaging guided radiation therapy.
Wenzhe XU ; Changjian WANG ; Yiming MA ; Chunfeng FANG ; Hanshun GONG ; Gaolong ZHANG ; Baolin QU ; Shouping XU
Journal of Biomedical Engineering 2021;38(1):161-168
Image-guided radiation therapy using magnetic resonance imaging (MRI) is a new technology that has been widely studied and developed in recent years. The technology combines the advantages of MRI imaging, and can offer online real-time tracking of tumor and adjacent organs at risk, as well as real-time optimization of radiotherapy plan. In order to provide a comprehensive understanding of this technology, and to grasp the international development and trends in this field, this paper reviews and summarizes related researches, so as to make the researchers and clinical personnel in this field to understand recent status of this technology, and carry out corresponding researches. This paper summarizes the advantages of MRI and the research progress of MRI linear accelerator (MR-Linac), online guidance, adaptive optimization, and dosimetry-related research. Possible development direction of these technologies in the future is also discussed. It is expected that this review can provide a certain reference value for clinician and related researchers to understand the research progress in the field.
Magnetic Resonance Imaging
;
Particle Accelerators
;
Radiometry
;
Radiotherapy Planning, Computer-Assisted
;
Radiotherapy, Image-Guided
4.Efficacy and dosimetry analysis of image-guided radioactive ¹²⁵I seed implantation as salvage treatment for pelvic recurrent cervical cancer after external beam radiotherapy.
Ang QU ; Ping JIANG ; Haitao SUN ; Weijuan JIANG ; Yuliang JIANG ; Suqing TIAN ; Junjie WANG
Journal of Gynecologic Oncology 2019;30(1):e9-
OBJECTIVE: To investigate the efficacy of image-guided radioactive 125I seed (IGRIS) implantation for pelvic recurrent cervical cancer (PRCC) after external beam radiotherapy (EBRT), and analyze the influence of clinical and dosimetric factors on efficacy. METHODS: From July 2005 to October 2015, 36 patients with PRCC received IGRIS. We evaluated local progression-free survival (LPFS) and overall survival (OS). RESULTS: The median follow up was 11.5 months. The 1- and 2-year LPFS rate was 34.9% and 20%, respectively. The multivariate analysis indicated recurrence site (central or pelvic wall) (hazard ratio [HR]=0.294; 95% confidence interval [CI]=0.121–0.718), lesion volume (HR=2.898; 95% CI=1.139–7.372), D 90 (HR=0.332; 95% CI=0.130–0.850) were the independent factors affecting LPFS. The 1- and 2-year OS rate was 52.0% and 19.6%, respectively. The multivariate analysis suggested pathological type (HR=9.713; 95% CI=2.136–44.176) and recurrence site (HR=0.358; 95% CI=0.136–0.940) were the independent factors affecting OS. The dosimetric parameters of 33 patients mainly included D 90 (128.5±47.4 Gy), D 100 (50.4±23.7 Gy) and V 100 (86.7%±12.9%). When D 90 ≥105 Gy or D 100 ≥55 Gy or V 100 ≥91%, LPFS was extended significantly, but no significant difference for OS. The 79.2% of 24 patients with local pain were suffering from pain downgraded after radioactive 125I seed implantation. CONCLUSION: IGRIS implantation could be a safe and effective salvage treatment for PRCC after EBRT, which could markedly release the pain. Recurrence site, tumor volume and dose were the main factors affected efficacy. Compared with central recurrence, it was more suitable for patients with pelvic wall recurrent cervical cancer after EBRT.
Brachytherapy
;
Disease-Free Survival
;
Follow-Up Studies
;
Humans
;
Multivariate Analysis
;
Radiometry
;
Radiotherapy*
;
Radiotherapy, Image-Guided
;
Recurrence
;
Salvage Therapy*
;
Tumor Burden
;
Uterine Cervical Neoplasms*
5.Current status of stereotactic body radiotherapy for the treatment of hepatocellular carcinoma
Jongmoo PARK ; Jae Won PARK ; Min Kyu KANG
Yeungnam University Journal of Medicine 2019;36(3):192-200
Stereotactic body radiotherapy (SBRT) is an advanced form of radiotherapy (RT) with a growing interest on its application in the treatment of hepatocellular carcinoma (HCC). It can deliver ablative radiation doses to tumors in a few fractions without excessive doses to normal tissues, with the help of advanced modern RT and imaging technologies. Currently, SBRT is recommended as an alternative to curative treatments, such as surgery and radiofrequency ablation. This review discusses the current status of SBRT to aid in the decision making on how it is incorporated into the HCC management.
Carcinoma, Hepatocellular
;
Catheter Ablation
;
Decision Making
;
Radiosurgery
;
Radiotherapy
;
Radiotherapy, Image-Guided
6.The use of tissue fiducial markers in improving the accuracy of post-prostatectomy radiotherapy
Michael CHAO ; Huong HO ; Daryl Lim JOON ; Yee CHAN ; Sandra SPENCER ; Michael NG ; Jason WASIAK ; Nathan LAWRENTSCHUK ; Kevin MCMILLAN ; Shomik SENGUPTA ; Alwin TAN ; George KOUFOGIANNIS ; Margaret COKELEK ; Farshad FOROUDI ; Tristan Scott KHONG ; Damien BOLTON
Radiation Oncology Journal 2019;37(1):43-50
PURPOSE: The aim of this retrospective study was to investigate the use of a radiopaque tissue fiducial marker (TFM) in the treatment of prostate cancer patients who undergo post-prostatectomy radiotherapy (PPRT). TFM safety, its role and benefit in quantifying the set-up uncertainties in patients undergoing PPRT image-guided radiotherapy were assessed. MATERIALS AND METHODS: A total of 45 consecutive PPRT patients underwent transperineal implantation of TFM at the level of vesicourethral anastomosis in the retrovesical tissue prior to intensity-modulated radiotherapy. Prostate bed motion was calculated by measuring the position of the TFM relative to the pelvic bony anatomy on daily cone-beam computed tomography. The stability and visibility of the TFM were assessed in the initial 10 patients. RESULTS: No postoperative complications were recorded. A total of 3,500 images were analysed. The calculated prostate bed motion for bony landmark matching relative to TFM were 2.25 mm in the left-right, 5.89 mm in the superior-inferior, and 6.59 mm in the anterior-posterior directions. A significant 36% reduction in the mean volume of rectum receiving 70 Gy (rV₇₀) was achieved for a uniform planning target volume (PTV) margin of 7 mm compared with the Australian and New Zealand Faculty of Radiation Oncology Genito-Urinary Group recommended PTV margin of 10 mm. CONCLUSION: The use of TFM was safe and can potentially eliminate set-up errors associated with bony landmark matching, thereby allowing for tighter PTV margins and a consequent favourable reduction in dose delivered to the bladder and rectum, with potential improvements in toxicities.
Clothing
;
Cone-Beam Computed Tomography
;
Fiducial Markers
;
Humans
;
New Zealand
;
Postoperative Complications
;
Prostate
;
Prostatectomy
;
Prostatic Neoplasms
;
Radiation Oncology
;
Radiotherapy
;
Radiotherapy, Image-Guided
;
Radiotherapy, Intensity-Modulated
;
Rectum
;
Retrospective Studies
;
Urinary Bladder
7.Interfraction variation and dosimetric changes during image-guided radiation therapy in prostate cancer patients
Frederik FUCHS ; Gregor HABL ; Michal DEVEČKA ; Severin KAMPFER ; Stephanie E COMBS ; Kerstin A KESSEL
Radiation Oncology Journal 2019;37(2):127-133
PURPOSE: The aim of this study was to identify volume changes and dose variations of rectum and bladder during radiation therapy in prostate cancer (PC) patients. MATERIALS AND METHODS: We analyzed 20 patients with PC treated with helical tomotherapy. Daily image guidance was performed. We re-contoured the entire bladder and rectum including its contents as well as the organ walls on megavoltage computed tomography once a week. Dose variations were analyzed by means of Dmedian, Dmean, Dmax, V₁₀ to V₇₅, as well as the organs at risk (OAR) volume. Further, we investigated the correlation between volume changes and changes in Dmean of OAR.
Humans
;
Organs at Risk
;
Prostate
;
Prostatic Neoplasms
;
Radiotherapy, Image-Guided
;
Radiotherapy, Intensity-Modulated
;
Rectum
;
Urinary Bladder
8.Strategic application of radiotherapy for hepatocellular carcinoma.
Clinical and Molecular Hepatology 2018;24(2):114-134
With increasing clinical use, radiotherapy (RT) has been considered reliable and effective method for hepatocellular carcinoma (HCC) treatment, depending on extent of disease and patient characteristics. RT for HCC can improve therapeutic outcomes through excellent local control, downstaging, conversion from unresectable to resectable status, and treatments of unresectable HCCs with vessel invasion or multiple intrahepatic metastases. In addition, further development of modern RT technologies, including image-guided radiotherapy (IGRT), intensity-modulated radiotherapy (IMRT), and stereotactic body radiotherapy, has expanded the indication of RT. An essential feature of IGRT is that it allows image guidance therapy through in-room images obtained during radiation delivery. Compared with 3D-conformal RT, distinctions of IMRT are inverse treatment planning process and use of a large number of treatment fields or subfields, which provide high precision and exquisitely conformal dose distribution. These modern RT techniques allow more precise treatment by reducing inter- and intra-fractional errors resulting from daily changes and irradiated dose at surrounding normal tissues. More recently, particle therapy has been actively investigated to improve effectiveness of RT. This review discusses modern RT strategies for HCC, as well as optimal selection of RT in multimodal approach for HCC.
Carcinoma, Hepatocellular*
;
Humans
;
Methods
;
Neoplasm Metastasis
;
Radiosurgery
;
Radiotherapy*
;
Radiotherapy, Image-Guided
;
Radiotherapy, Intensity-Modulated
9.Expert Consensus for Image-guided Radiofrequency Ablation of Pulmonary Tumors (2018 Version).
Baodong LIU ; Xin YE ; Weijun FAN ; Xiaoguang LI ; Weijian FENG ; Qiang LU ; Yu MAO ; Zhengyu LIN ; Lu LI ; Yiping ZHUANG ; Xudong NI ; Jialin SHEN ; Yili FU ; Jianjun HAN ; Chenrui LI ; Chen LIU ; Wuwei YANG ; Zhiyong SU ; Zhiyuan WU ; Lei LIU
Chinese Journal of Lung Cancer 2018;21(2):76-88
10.Accuracy of different image registration methods in image-guided adaptive brachytherapy for cervical cancer.
Qinghe PENG ; Yinglin PENG ; Jinhan ZHU ; Mingzhan CAI ; Linghong ZHOU
Journal of Southern Medical University 2018;38(11):1344-1348
OBJECTIVE:
To compare the accuracy of different methods for image registration in image-guided adaptive brachytherapy (IGABT) for cervical cancer.
METHODS:
The last treatment planning CT images (CT1) and the first treatment planning CT images (CT2) were acquired from 15 patients with cervical cancer and registered with different match image qualities (retained/removed catheter source in images) and different match regions [target only (S Group)/ interested organ structure (M Group)/body (L Group)] in Velocity3.2 software. The dice similarity coefficient (DSC) between the clinical target volumes (CTV) of the CT1 and CT2 images (CTVCT1 and CTVCT2, respectively) and between the organs-at-risk (OAR) of the two imaging datasets (OARCT1 and OARCT2, respectively) were used to evaluate the image registration accuracy.
RESULTS:
The auto-segmentation volume of the catheter source using Velocity software based on the CT threshold was the closest to the actual volume within the CT value range of 1700-1800 HU. In the retained group, the DSC for the OARs of was better than or equal to that of the removed group, and the DSC value of the rectum was significantly improved ( < 0.05). For comparison of different match regions, the high-risk target volume (HRCTV) and the low-risk target volume (IRCTV) had the best precision for registration of the target area, which was significantly greater than that of M group and L group ( < 0.05). The M group had better registration accuracy of the target area and the best accuracy for the OARs. The DSC values of the bladder and rectum were significantly better than those of the other two groups ( < 0.05).
CONCLUSIONS
The CT value range of 1700-1800 HU is optimal for automatic image segmentation using Velocity software. Automatic segmentation and shielding the volume of the catheter source can improve the image quality. We recommend the use of interested organ structures regions for image registration in image-guided adaptive brachytherapy for cervical cancer.
Brachytherapy
;
methods
;
standards
;
Female
;
Humans
;
Organs at Risk
;
diagnostic imaging
;
Radiotherapy Dosage
;
Radiotherapy Planning, Computer-Assisted
;
methods
;
standards
;
Radiotherapy, Image-Guided
;
methods
;
standards
;
Software
;
Tomography, X-Ray Computed
;
methods
;
standards
;
Uterine Cervical Neoplasms
;
diagnostic imaging
;
radiotherapy

Result Analysis
Print
Save
E-mail