1.hiPSCs and organoids: prediction of arrhythmogenic risks for optimized traditional Chinese medicine.
Hao-Kun SUN ; Yuan GAO ; Ming-Jun ZHU ; Jin-Fa TANG ; Ying WU ; Bin LI ; Rui YU ; Yan WANG ; Lu-Ye ZHOU
China Journal of Chinese Materia Medica 2023;48(20):5404-5409
Accurate assessment of the risks associated with traditional Chinese medicine(TCM), such as the potential to induce serious cardiovascular adverse reactions including cardiac arrhythmias, is crucial. This article introduced the pharmacological evaluation strategies for cardiac safety and the progress in cardiac organ research, with a focus on discussing the application prospects of human induced pluripotent stem cells(hiPSCs) and organoids in assessing the risks of TCM-induced cardiac arrhythmias. Compared with traditional animal models, hiPSCs and organoid models provide better reference and predictive capabilities, allowing for more accurate simulation of human cardiac responses. Researchers have successfully generated various cardiac tissue models that mimic the structure and function of the heart to evaluate the effects of TCM on the heart. The hiPSCs model, by reprogramming adult cells into pluripotent stem cells and differentiating them into cardiac cells, enables the generation of personalized cardiac tissue, which better reflects individual differences and drug responses. This provides guidance for the assessment of TCM cardiac toxicity risks. By combining organoid model with cardiac safety pharmacology strategies such as electrocardiogram monitoring and ion channel function assessment, the impact of TCM on the heart can be comprehensively evaluated. In addition, the application of the Comprehensive in Vitro Proarrhythmia Assay(CiPA) approach improves the accuracy of evaluation. Applying the CiPA approach to TCM research reveals potential risks and provides a scientific basis for the clinical application and industrial development of TCM. In conclusion, organoid model and cardiac safety pharmacology evaluation strategies provide important tools for assessing the cardiac toxicity risks of TCM. The combination of hiPSCs model, comprehensive assessment methods, and the CiPA strategy enables an accurate assessment of the risks of TCM-induced cardiac arrhythmias, thus providing a scientific basis for the safe use and international recognition of TCM in clinical practice. This contributes to ensuring the safety and efficacy of TCM and promoting its clinical application and global acceptance.
Animals
;
Humans
;
Medicine, Chinese Traditional/adverse effects*
;
Cardiotoxicity
;
Induced Pluripotent Stem Cells
;
Arrhythmias, Cardiac/chemically induced*
;
Myocytes, Cardiac
;
Organoids
;
Drugs, Chinese Herbal/adverse effects*
2.Effect of Recombinant Human Thrombopoietin (rhTPO) on Long-term Hematopoietic Recovery in Mice with Acute Radiation Sickness and Relative Mechanism.
Hao LUAN ; Shuang XING ; Jing-Kun YANG ; Ye-Mei WANG ; Xue-Wen ZHANG ; Zi-Zhi QIAO ; Xing SHEN ; Zu-Yin YU
Journal of Experimental Hematology 2023;31(2):546-552
OBJECTIVE:
To investigate the effect and relative mechanism of Recombinant Human Thrombopoietin (rhTPO) on long-term hematopoietic recovery in mice with acute radiation sickness.
METHODS:
Mice were intramuscularly injected with rhTPO (100 μg/kg) 2 hours after total body irradiation with 60Co γ-rays (6.5 Gy). Moreover, six months after irradiation, peripheral blood, hematopoietic stem cells (HSC) ratio, competitive transplantation survival rate and chimerization rate, senescence rate of c-kit+ HSC, and p16 and p38 mRNA expression of c-kit+ HSC were detected.
RESULTS:
Six months after 6.5 Gy γ-ray irradiation, there were no differences in peripheral blood white blood cells, red blood cells, platelets, neutrophils and bone marrow nucleated cells in normal group, irradiated group and rhTPO group (P>0.05). The proportion of hematopoietic stem cells and multipotent progenitor cells in mice of irradiated group was significantly decreased after irradiation (P<0.05), but there was no significant changes in rhTPO group (P>0.05). The counts of CFU-MK and BFU-E in irradiated group were significantly lower than that in normal group, and rhTPO group was higher than that of the irradiated group(P<0.05). The 70 day survival rate of recipient mice in normal group and rhTPO group was 100%, and all mice died in irradiation group. The senescence positive rates of c-kit+ HSC in normal group, irradiation group and rhTPO group were 6.11%, 9.54% and 6.01%, respectively (P<0.01). Compared with the normal group, the p16 and p38 mRNA expression of c-kit+ HSC in the irradiated mice were significantly increased (P<0.01), and it was markedly decreased after rhTPO administration (P<0.01).
CONCLUSION
The hematopoietic function of mice is still decreased 6 months after 6.5 Gy γ-ray irradiation, suggesting that there may be long-term damage. High-dose administration of rhTPO in the treatment of acute radiation sickness can reduce the senescence of HSC through p38-p16 pathway and improve the long-term damage of hematopoietic function in mice with acute radiation sickness.
Humans
;
Mice
;
Animals
;
Thrombopoietin/metabolism*
;
Hematopoietic Stem Cells
;
Blood Platelets
;
Recombinant Proteins/therapeutic use*
;
Radiation Injuries
;
RNA, Messenger/metabolism*
3.Research Progress on the Protective Effect of Intestinal Flora on Radiation-induced Lung Injury in Thoracic Tumors.
Chinese Journal of Lung Cancer 2023;26(6):467-472
Radiation therapy is one of the main treatment methods for patients with thoracic malignant tumors, which can effectively improve the survival rate of the patients. However, radiation therapy can also cause damage to normal tissues while treating tumors, leading to radiation-induced lung injury such as radiation pneumonia and pulmonary fibrosis. Radiation-induced lung injury is a complex pathophysiological process involving many factors, and its prevention and treatment is one of the difficult problems in the field of radiation medicine. Therefore, the search for sensitive predictors of radiation-induced lung injury can guide clinical radiotherapy and reduce the incidence of radiation-induced lung injury. With the in-depth study of intestinal flora, it can drive immune cells or metabolites to reach lung tissue through the circulatory system to play a role, and participate in the occurrence, development and treatment of lung diseases. At present, there are few studies on intestinal flora and radiation-induced lung injury. Therefore, this paper will comprehensively elaborate the interaction between intestinal flora and radiation-induced lung injury, so as to provide a new direction and strategy for studying the protective effect of intestinal flora on radiation-induced lung injury.
.
Humans
;
Lung Injury/prevention & control*
;
Gastrointestinal Microbiome
;
Lung Neoplasms/radiotherapy*
;
Lung/pathology*
;
Radiation Injuries/metabolism*
;
Thoracic Neoplasms
4.Structural characterization, in vivo toxicity and biological activity of two new pyro-type diterpenoid alkaloids derived from 3-acetylaconitine.
Yu-Jie WANG ; Yan WANG ; Pei TAO
Journal of Integrative Medicine 2023;21(3):302-314
OBJECTIVE:
The transformations that occur in diterpenoid alkaloids during the process of sand frying for Chinese herbal medicine preparation have yet to be clarified. This study investigated the structural changes that take place in 3-acetylaconitine during a simulation of heat-processing and evaluated the toxicity and biological activity of the pyrolysis products.
METHODS:
The diterpenoid alkaloid 3-acetylaconitine was heated at 180 °C for 15 min to simulate the process of sand frying. The pyrolysis products were separated using column chromatography, and their structures were investigated using high-resolution electrospray ionization mass spectroscopy and nuclear magnetic resonance spectroscopy. Further, in vivo cardiotoxicity and acute toxicity of 3-acetylaconitine and its pyrolysis products were compared, and the aconitine-induced arrhythmia model was employed to evaluate the antiarrhythmic effect of the pyrolysis products.
RESULTS:
Two new diterpenoid alkaloids, pyroacetylaconitine and 16-epi-pyroacetylaconitine, a pair of epimers at C-16, were isolated. After comparing the structures of these compounds, possible transformation pathways were proposed. Compared with the prototype compound, 3-acetylaconitine, the cardiotoxicity and acute toxicity of the heat-transformed products were significantly decreased. In the biological activity assay, the two pyrolysis products exhibited an effective increase in ventricular premature beat latency, a reduction in the occurrence of ventricular tachycardia, as well as an increase in the rate of arrhythmia inhibition, implying strong antiarrhythmic activity.
CONCLUSION
Compared with 3-acetylaconitine, its pyrolysis products displayed lower toxicity and good antiarrhythmic effects; thus, they have potential for being developed into antiarrhythmic medicines. Please cite this article as: Wang YJ, Wang Y, Tao P. Structural characterization, in vivo toxicity and biological activity of two new pyro-type diterpenoid alkaloids derived from 3-acetylaconitine. J Integr Med. 2023; 21(3): 302-314.
Humans
;
Aconitine/chemistry*
;
Cardiotoxicity
;
Sand
;
Alkaloids/toxicity*
;
Arrhythmias, Cardiac/drug therapy*
;
Diterpenes/toxicity*
5.Analysis of risk factors of radiation-induced toxicity in limited-stage small cell lung cancer treated with hypofractionated intensity-modulated radiotherapy.
Jing Jing ZHAO ; Nan BI ; Tao ZHANG ; Jian Yang WANG ; Lei DENG ; Xin WANG ; Dong Fu CHEN ; Jian Rong DAI ; Luhua WANG
Chinese Journal of Oncology 2023;45(7):627-633
Objective: To compare the incidence of radiation-related toxicities between conventional and hypofractionated intensity-modulated radiation therapy (IMRT) for limited-stage small cell lung cancer (SCLC), and to explore the risk factors of hypofractionated radiotherapy-induced toxicities. Methods: Data were retrospectively collected from consecutive limited-stage SCLC patients treated with definitive concurrent chemoradiotherapy in Cancer Hospital of Chinese Academy of Medical Sciences from March 2016 to April 2022. The enrolled patients were divided into two groups according to radiation fractionated regimens. Common Terminology Criteria for Adverse Events (CTCAE, version 5.0) was used to evaluate the grade of radiation esophagus injuries and lung injuries. Logistic regression analyses were used to identify factors associated with radiation-related toxicities in the hypofractionated radiotherapy group. Results: Among 211 enrolled patients, 108 cases underwent conventional IMRT and 103 patients received hypofractionated IMRT. The cumulative incidences of acute esophagitis grade ≥2 [38.9% (42/108) vs 35.0% (36/103), P=0.895] and grade ≥ 3 [1.9% (2/108) vs 5.8% (6/103), P=0.132] were similar between conventional and hypofractionated IMRT group. Late esophagus injuries grade ≥2 occurred in one patient in either group. No differences in the cumulative incidence of acute pneumonitis grade ≥2[12.0% (13/108) vs 5.8% (6/103), P=0.172] and late lung injuries grade ≥2[5.6% (6/108) vs 10.7% (11/103), P=0.277] were observed. There was no grade ≥3 lung injuries occurred in either group. Using multiple regression analysis, mean esophageal dose ≥13 Gy (OR=3.33, 95% CI: 1.23-9.01, P=0.018) and the overlapping volume between planning target volume (PTV) and esophageal ≥8 cm(3)(OR=3.99, 95% CI: 1.24-12.79, P=0.020) were identified as the independent risk factors associated with acute esophagitis grade ≥2 in the hypofractionated radiotherapy group. Acute pneumonitis grade ≥2 was correlated with presence of chronic obstructive pulmonary disease (COPD, P=0.025). Late lung injuries grade ≥2 was correlated with tumor location(P=0.036). Conclusions: Hypofractionated IMRT are tolerated with manageable toxicities for limited-stage SCLC patients treated with IMRT. Mean esophageal dose and the overlapping volume between PTV and esophageal are independently predictive factors of acute esophagitis grade ≥2, and COPD and tumor location are valuable factors of lung injuries for limited-stage SCLC patients receiving hyofractionated radiotherapy. Prospective studies are needed to confirm these results.
Humans
;
Small Cell Lung Carcinoma/pathology*
;
Lung Neoplasms/pathology*
;
Radiotherapy, Intensity-Modulated/methods*
;
Retrospective Studies
;
Lung Injury
;
Radiotherapy Dosage
;
Radiation Injuries/epidemiology*
;
Esophagitis/epidemiology*
;
Risk Factors
;
Pulmonary Disease, Chronic Obstructive/complications*
6.Molecular mechanism of ginsenoside Rg_1 against radiation enteritis: based on network pharmacology and in vitro experiment.
Yu-Guo WANG ; Yong-Qi DOU ; Zi-Qiao YAN ; Yue GAO
China Journal of Chinese Materia Medica 2023;48(10):2810-2819
Via network pharmacology, molecular docking, and cellular experiment, this study explored and validated the potential molecular mechanism of ginsenoside Rg_1(Rg_1) against radiation enteritis. Targets of Rg_1 and radiation enteritis were retrieved from BATMAN-TCM, SwissTargetPrediction, and GeneCards. Cytoscape 3.7.2 and STRING were employed for the construction of protein-protein interaction(PPI) network for the common targets, and screening of core targets. DAVID was used for Gene Ontology(GO) term and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment to predict the possible mechanism, followed by molecular docking of Rg_1 with core targets and cellular experiment. For the cellular experiment, ~(60)Co-γ irradiation was performed for mo-deling of IEC-6 cells, which were then treated with Rg_1, protein kinase B(AKT) inhibitor LY294002, and other drugs to verify the effect and mechanism of Rg_1. The results showed that 29 potential targets of Rg_1, 4 941 disease targets, and 25 common targets were screened out. According to the PPI network, the core targets were AKT1, vascular endothelial growth factor A(VEGFA), heat shock protein 90 alpha family class A member 1(HSP90AA1), Bcl-2-like protein 1(BCL2L1), estrogen receptor 1(ESR1), etc. The common targets were mainly involved in the GO terms such as positive regulation of RNA polymerase Ⅱ promoter transcription, signal transduction, positive regulation of cell proliferation, and other biological processes. The top 10 KEGG pathways included phosphoinositide 3-kinase(PI3K)/AKT pathway, RAS pathway, mitogen-activated protein kinase(MAPK) pathway, Ras-proximate-1(RAP1) pathway, and calcium pathway, etc. Molecular docking showed that Rg_1 had high binding affinity to AKT1, VEGFA, HSP90AA1, and other core targets. Cellular experiment indicated that Rg_1 can effectively improve cell viability and survival, decrease apoptosis after irradiation, promote the expression of AKT1 and B-cell lymphoma-extra large(BCL-XL), and inhibit the expression of the pro-apoptotic protein Bcl-2-associated X protein(BAX). In conclusion, through network pharmacology, molecular docking, and cellular experiment, this study verified the ability of Rg_1 to reduce radiation enteritis injury. The mechanism was that it regulated PI3K/AKT pathway, thereby suppressing apoptosis.
Humans
;
Proto-Oncogene Proteins c-akt/genetics*
;
Network Pharmacology
;
Ginsenosides/pharmacology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Vascular Endothelial Growth Factor A
;
Molecular Docking Simulation
;
Radiation Injuries
;
Drugs, Chinese Herbal/pharmacology*
7.Research progress of irradiation injuries anti-agents.
Ya Nan DU ; Xue Ying YANG ; Qiang ZENG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(3):237-240
Irradiation injuries anti-agents refer to drugs that can inhibit the initial stage of radiation injuries, or reduce the development of radiation injuries and promote the recovery of injuries when used early after irradiation exposure. According to the mechanism of action and the time of intervention, the irradiation injuries anti-agents are divided into four categories: radioprotectors, radiomitigators, radiation therapeutics for external radiation exposure, and anti-agents for internalized radionuclides. In this paper, the research progress of irradiation injuries anti-agents in recent years is reviewed.
Humans
;
Radiation-Protective Agents/therapeutic use*
;
Radiation Injuries/prevention & control*
8.Clincal practice of pelvic exenteration for late complications of pelvic radiation injury.
Teng Hui MA ; Yan Jiong HE ; Zuo Lin ZHOU
Chinese Journal of Gastrointestinal Surgery 2023;26(3):235-240
Pelvic radiation injury can potentially involve multiple pelvic organs, and due to its progressive and irreversible nature, its late stage can be complicated by fistulas, perforations, obstructions and other complications involved multiple pelvic organs, which seriously affect the long-term survival and the quality of life of patients. As a multidisciplinary surgical approach, pelvic exenteration has potential application in the treatment of late complications of pelvic radiation injury by completely removing the irradiated lesion, relieving symptoms and avoiding recurrence of symptoms. In clinical practice, we should advocate the concept of "pelvic radiation injury", emphasize multidisciplinary collaboration, fully evaluate the overall status of patients, primary tumor and pelvic radiation injury. We should follow the principles of "damage-control" and "extended resection", and follow the principle of enhanced recovery after surgery to achieve the goal of ensuring the surgical safety, relieving patients' symptoms and improving patients' quality of life and long-term survival.
Humans
;
Pelvic Exenteration/adverse effects*
;
Postoperative Complications
;
Quality of Life
;
Radiation Injuries/surgery*
;
Neoplasm Recurrence, Local/surgery*
;
Retrospective Studies
9.Ginsenoside Rg_3 based liposomes target delivery of dihydroartemisinin and paclitaxel for treatment of triple-negative breast cancer.
Hua LIU ; Yi LIU ; Na LI ; Guo-Qin ZHANG ; Meng WANG
China Journal of Chinese Materia Medica 2023;48(13):3472-3484
Ginsenoside Rg_3, an active component of traditional Chinese medicine(TCM), was used as the substitute for cholesterol as the membrane material to prepare the ginsenoside Rg_3-based liposomes loaded with dihydroartemisinin and paclitaxel. The effect of the prepared drug-loading liposomes on triple-negative breast cancer in vitro was evaluated. Liposomes were prepared with the thin film hydration method, and the preparation process was optimized by single factor experiments. The physicochemical properties(e.g., particle size, Zeta potential, and stability) of the liposomes were characterized. The release behaviors of drugs in different media(pH 5.0 and pH 7.4) were evaluated. The antitumor activities of the liposomes were determined by CCK-8 on MDA-MB-231 and 4T1 cells. The cell scratch test was carried out to evaluate the effect of the liposomes on the migration of MDA-MB-231 and 4T1 cells. Further, the targeting ability of liposomes and the mechanism of lysosome escape were investigated. Finally, H9c2 cells were used to evaluate the potential cardiotoxicity of the preparation. The liposomes prepared were spheroid, with uniform particle size distribution, the ave-rage particle size of(107.81±0.01) nm, and the Zeta potential of(2.78±0.66) mV. The encapsulation efficiency of dihydroartemisinin and paclitaxel was 57.76%±1.38% and 99.66%±0.07%, respectively, and the total drug loading was 4.46%±0.71%. The accumulated release of dihydroartemisinin and paclitaxel from the liposomes at pH 5.0 was better than that at pH 7.4, and the liposomes could be stored at low temperature for seven days with good stability. Twenty-four hours after administration, the inhibition rates of the ginsenoside Rg_3-based liposomes loaded with dihydroartemisinin(70 μmol·L~(-1)) and paclitaxel on MDA-MB-231 and 4T1 cells were higher than those of the positive control(adriamycin) and free drugs(P<0.01). Compared with free drugs, liposomes inhibited the migration of MDA-MB-231 and 4T1 cells(P<0.05). Liposomes demonstrated active targeting and lysosome escape. In particular, liposomes showed lower toxicity to H9c2 cells than free drugs(P<0.05), which indicated that the preparation had the potential to reduce cardiotoxicity. The findings prove that ginsenoside Rg_3 characterized by the combination of drug and excipient is an ideal substitute for lipids in liposomes and promoted the development of innovative TCM drugs for treating cancer.
Humans
;
Paclitaxel/pharmacology*
;
Liposomes/chemistry*
;
Ginsenosides/therapeutic use*
;
Triple Negative Breast Neoplasms/drug therapy*
;
Cardiotoxicity/drug therapy*
;
Cell Line, Tumor
10.Expert Consensus on the Treatment of Antiangiogenic Agents for Radiation Brain Necrosis.
Yi CHEN ; Xin WANG ; Bing SUN ; Maobin MENG ; Enmin WANG ; Zhiyong YUAN ; Hongqing ZHUANG
Chinese Journal of Lung Cancer 2022;25(5):291-294
Vascular damage is followed by vascular endothelial growth factor (VEGF) expression at high levels, which is an important mechanism for cerebral radiation necrosis (CRN) development. Antiangiogenic agents (Bevacizumab) alleviates brain edema symptoms caused by CRN through inhibiting VEGF and acting on vascular tissue around the brain necrosis area. Many studies have confirmed that Bevacizumab effectively relieves symptoms caused by brain necrosis, improves patients' performance status and brain necrosis imaging. Considering that the efficacy of antiangiogenic therapy is mainly related to the duration of drug action, low-dose antiangiogenic agents can achieve favorable efficacy. Prevention is the best treatment. The occurrence of CRN is associated with tumor-related factors and treatment-related factors. By controlling these factors, CRN can be effectively prevented.
.
Angiogenesis Inhibitors/pharmacology*
;
Bevacizumab/therapeutic use*
;
Brain/metabolism*
;
Consensus
;
Humans
;
Lung Neoplasms/drug therapy*
;
Necrosis/etiology*
;
Radiation Injuries/etiology*
;
Vascular Endothelial Growth Factor A/metabolism*

Result Analysis
Print
Save
E-mail