1.Research progress of irradiation injuries anti-agents.
Ya Nan DU ; Xue Ying YANG ; Qiang ZENG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(3):237-240
Irradiation injuries anti-agents refer to drugs that can inhibit the initial stage of radiation injuries, or reduce the development of radiation injuries and promote the recovery of injuries when used early after irradiation exposure. According to the mechanism of action and the time of intervention, the irradiation injuries anti-agents are divided into four categories: radioprotectors, radiomitigators, radiation therapeutics for external radiation exposure, and anti-agents for internalized radionuclides. In this paper, the research progress of irradiation injuries anti-agents in recent years is reviewed.
Humans
;
Radiation-Protective Agents/therapeutic use*
;
Radiation Injuries/prevention & control*
2.Research Progress on the Protective Effect of Intestinal Flora on Radiation-induced Lung Injury in Thoracic Tumors.
Chinese Journal of Lung Cancer 2023;26(6):467-472
Radiation therapy is one of the main treatment methods for patients with thoracic malignant tumors, which can effectively improve the survival rate of the patients. However, radiation therapy can also cause damage to normal tissues while treating tumors, leading to radiation-induced lung injury such as radiation pneumonia and pulmonary fibrosis. Radiation-induced lung injury is a complex pathophysiological process involving many factors, and its prevention and treatment is one of the difficult problems in the field of radiation medicine. Therefore, the search for sensitive predictors of radiation-induced lung injury can guide clinical radiotherapy and reduce the incidence of radiation-induced lung injury. With the in-depth study of intestinal flora, it can drive immune cells or metabolites to reach lung tissue through the circulatory system to play a role, and participate in the occurrence, development and treatment of lung diseases. At present, there are few studies on intestinal flora and radiation-induced lung injury. Therefore, this paper will comprehensively elaborate the interaction between intestinal flora and radiation-induced lung injury, so as to provide a new direction and strategy for studying the protective effect of intestinal flora on radiation-induced lung injury.
.
Humans
;
Lung Injury/prevention & control*
;
Gastrointestinal Microbiome
;
Lung Neoplasms/radiotherapy*
;
Lung/pathology*
;
Radiation Injuries/metabolism*
;
Thoracic Neoplasms
3.Chinese consensus on diagnosis and treatment of radiation proctitis (2018).
Chinese Journal of Gastrointestinal Surgery 2018;21(12):1321-1336
Radiation proctitis denotes the radiation damage of rectum caused by radiotherapy to pelvic malignancy. The clinical practices of radiation proctitis should be fully considered from diagnosis, treatment and prevention. In order to determine appropriate treatment strategies, the diagnosis of radiation proctitis should be based on clinical symptoms, endoscopic findings, imaging and histopathology to assess severity of symptoms and stage of disease. In terms of treatment decisions, non-surgical interventions are generally applied to relieve major symptoms and avoid serious complications. Diverting colostomy and restorative resection are the main surgical treatments for patients with recurrent symptoms. In terms of prevention, radiation proctitis should be prevented by improvement of radiotherapy technology, physical protection and prophylactic medication. This guide aims to provide guidance for the clinical practices of radiation proctitis in China.
China
;
Consensus
;
Humans
;
Proctitis
;
diagnosis
;
therapy
;
Radiation Injuries
;
diagnosis
;
prevention & control
;
therapy
;
Rectum
;
pathology
;
radiation effects
4.MMP Inhibitor Ilomastat Improves Survival of Mice Exposed to γ-Irradiation.
Xiao Man LI ; Yong TAN ; Chun Qian HUANG ; Meng Chuan XU ; Qian LI ; Dong PAN ; Bao Quan ZHAO ; Bu Rong HU
Biomedical and Environmental Sciences 2018;31(6):467-472
There is still a need for better protection against or mitigation of the effects of ionizing radiation following conventional radiotherapy or accidental exposure. The objective of our current study was to investigate the possible roles of matrix metalloproteinase inhibitor, ilomastat, in the protection of mice from total body radiation (TBI), and the underlying protective mechanisms. Ilomastat treatment increased the survival of mice after TBI. Ilomastat pretreatment promoted recovery of hematological and immunological cells in mice after 6 Gy γ-ray TBI. Our findings suggest the potential of ilomastat to protect against or mitigate the effects of radiation.
Acute Radiation Syndrome
;
blood
;
immunology
;
prevention & control
;
Animals
;
Blood Cells
;
drug effects
;
radiation effects
;
Dose-Response Relationship, Drug
;
Gamma Rays
;
adverse effects
;
Hydroxamic Acids
;
therapeutic use
;
Indoles
;
therapeutic use
;
Matrix Metalloproteinase Inhibitors
;
therapeutic use
;
Mice
;
Radiation Injuries, Experimental
;
blood
;
immunology
;
prevention & control
;
Radiation-Protective Agents
;
therapeutic use
;
Spleen
;
drug effects
;
immunology
;
radiation effects
;
Survival Analysis
;
Whole-Body Irradiation
5.Nursing care of prostate cancer patients against radiative proctitisinduced by CyberKnife treatment.
Ao-Mei LI ; Jie GAO ; Kai-Yu LU ; Sheng-Yuan ZHANG
National Journal of Andrology 2017;23(1):69-72
Objective:
To investigate the nursing care of prostate cancer (PCa) patients againstradioactive proctitisinduced byCyberKnifetreatment.
METHODS:
Sixty-eightPCapatients undergoingCyberKnife treatment in the observation group receivedspecialnursing care againstradioactive proctitis. The nursing measures includedthoserelevant toCyberKnife treatment, prevention ofradioactive proctitis, skin care, and discharge guidance. Meanwhile, another 54 prostate cancer patients received traditional nursing care as controls. We compared the incidence rate and severity of radioactive proctitis between the two groups of patients.
RESULTS:
The incidence rate of radioactive proctitiswas markedly lower in the observation group than in the control (2.9% vs 13.0%, P<0.05), but no statistically significant difference was observed in the severity of radioactive proctitis between the two groups of patients.
CONCLUSIONS
The special nursing care againstCyberKnife-induced radioactiveproctitiscan significantlyreduce the incidence of radioactive proctitis andimprove the effect of CyberKnife treatment of prostate cancer, which therefore deserves wide clinical application.
Case-Control Studies
;
Humans
;
Male
;
Proctitis
;
etiology
;
nursing
;
prevention & control
;
Prostatic Neoplasms
;
radiotherapy
;
Radiation Injuries
;
nursing
;
prevention & control
;
Radiosurgery
;
adverse effects
6.General Principles of Radiation Protection in Fields of Diagnostic Medical Exposure.
Journal of Korean Medical Science 2016;31(Suppl 1):S6-S9
After the rapid development of medical equipment including CT or PET-CT, radiation doses from medical exposure are now the largest source of man-made radiation exposure. General principles of radiation protection from the hazard of ionizing radiation are summarized as three key words; justification, optimization, and dose limit. Because medical exposure of radiation has unique considerations, diagnostic reference level is generally used as a reference value, instead of dose limits. In Korea, medical radiation exposure has increased rapidly. For medical radiation exposure control, Korea has two separate control systems. Regulation is essential to control medical radiation exposure. Physicians and radiologists must be aware of the radiation risks and benefits associated with medical exposure, and understand and implement the principles of radiation protection for patients. The education of the referring physicians and radiologists is also important.
Guidelines as Topic
;
Humans
;
International Agencies
;
*Occupational Exposure
;
Positron-Emission Tomography
;
Radiation Injuries/etiology/prevention & control
;
*Radiation Protection
;
Radiation, Ionizing
;
Radiotherapy Dosage/standards
;
Reference Values
;
Tomography, X-Ray Computed
7.History and Organizations for Radiological Protection.
Journal of Korean Medical Science 2016;31(Suppl 1):S4-S5
International Commission on Radiological Protection (ICRP), an independent international organization established in 1925, develops, maintains, and elaborates radiological protection standards, legislation, and guidelines. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) provides scientific evidence. World Health Organization (WHO) and International Atomic Energy Agency (IAEA) utilise the ICRP recommendations to implement radiation protection in practice. Finally, radiation protection agencies in each country adopt the policies, and adapt them to each situation. In Korea, Nuclear Safety and Security Commission is the governmental body for nuclear safety regulation and Korea Institute of Nuclear Safety is a public organization for technical support and R&D in nuclear safety and radiation protection.
History, 20th Century
;
Humans
;
International Agencies/*organization & administration
;
Radiation Injuries/etiology/prevention & control
;
Radiation Protection/history/*legislation & jurisprudence
;
Radiation, Ionizing
8.Low Hepatic Toxicity in Primary and Metastatic Liver Cancers after Stereotactic Ablative Radiotherapy Using 3 Fractions.
Sun Hyun BAE ; Mi Sook KIM ; Won Il JANG ; Chul Koo CHO ; Hyung Jun YOO ; Kum Bae KIM ; Chul Ju HAN ; Su Cheol PARK ; Dong Han LEE
Journal of Korean Medical Science 2015;30(8):1055-1061
This study evaluated the incidence of hepatic toxicity after stereotactic ablative radiotherapy (SABR) using 3 fractions to the liver, and identified the predictors for hepatic toxicity. We retrospectively reviewed 78 patients with primary and metastatic liver cancers, who underwent SABR using 3 fractions between 2003 and 2011. To examine the incidence of hepatic toxicity, we defined newly developed hepatic toxicity> or =grade 2 according to the National Cancer Institute Common Terminology Criteria for Adverse Events v4.0 within 3 months after the end of SABR as a significant adverse event. To identify the predictors for hepatic toxicity, we analyzed several clinical and dosimetric parameters (rV(5Gy)-rV(35Gy): normal liver volume receiving
Aged
;
*Dose Fractionation
;
Female
;
Hepatitis/*etiology/pathology/prevention & control
;
Humans
;
Liver Neoplasms/complications/pathology/*surgery
;
Male
;
Middle Aged
;
Neoplasm Metastasis
;
Radiation Injuries/*etiology/pathology/prevention & control
;
Radiosurgery/*adverse effects/*methods
;
Radiotherapy Dosage
;
Treatment Outcome
9.Protective effects of shikonin on brain injury induced by carbon ion beam irradiation in mice.
Lu GAN ; ; Zhen Hua WANG ; Hong ZHANG ; ; Rong ZHOU ; ; Chao SUN ; ; Yang LIU ; ; Jing SI ; ; Yuan Yuan LIU ; ; Zhen Guo WANG
Biomedical and Environmental Sciences 2015;28(2):148-151
Radiation encephalopathy is the main complication of cranial radiotherapy. It can cause necrosis of brain tissue and cognitive dysfunction. Our previous work had proved that a natural antioxidant shikonin possessed protective effect on cerebral ischemic injury. Here we investigated the effects of shikonin on carbon ion beam induced radiation brain injury in mice. Pretreatment with shikonin significantly increased the SOD and CAT activities and the ratio of GSH/GSSG in mouse brain tissues compared with irradiated group (P<0.01), while obviously reduced the MDA and PCO contents and the ROS levels derived from of the brain mitochondria. The shikonin also noticeably improved the spatial memory deficits caused by carbon ion beam irradiation. All results demonstrated that shikonin could improve the irradiated brain injury which might resulted from its modulation effects on the oxidative stress induced by the 12C6+ ion beam.
Animals
;
Antioxidants
;
pharmacology
;
Brain Injuries
;
prevention & control
;
Catalase
;
metabolism
;
Heavy Ion Radiotherapy
;
Male
;
Malondialdehyde
;
metabolism
;
Mice
;
Naphthoquinones
;
pharmacology
;
Protein Carbonylation
;
Radiation Injuries, Experimental
;
prevention & control
;
Radiation-Protective Agents
;
pharmacology
;
Random Allocation
;
Specific Pathogen-Free Organisms
;
Superoxide Dismutase
;
metabolism

Result Analysis
Print
Save
E-mail