1.Investigating the impact of silencing an RNA-binding protein gene <i>SlRBP1i> on tomato photosynthesis through RNA-sequencing analysis.
Xiwen ZHOU ; Liqun MA ; Hongliang ZHU
Chinese Journal of Biotechnology 2024;40(1):150-162
Photosynthesis in plants directly affects the synthesis and accumulation of organic matter, which directly influences crop yield. RNA-binding proteins (RBPs) are involved in the regulation of a variety of physiological functions in plants, while the functions of RBPs in photosynthesis have not been clearly elucidated. To investigate the effect of a glycine-rich RNA-binding protein (SlRBP1) in tomato on plant photosynthesis, a stably inherited <i>SlRBP1i> silenced plant in Alisa Craig was obtained by plant tissue culture using artificial small RNA interference. It turns out that the size of the tomato fruit was reduced and leaves significantly turned yellow. Chlorophyll(Chl) content measurement, Chl fluorescence imaging and chloroplast transmission electron microscopy revealed that the chloroplast morphology and structure of the leaves of tomato amiR-<i>SlRBP1i> silenced plants were disrupted, and the chlorophyll content was significantly reduced. Measurement of photosynthesis rate of wild-type and amiR-<i>SlRBP1i> silenced plants in the same period demonstrated that the photosynthetic rate of these plants was significantly reduced, and analysis of RNA-seq data indicated that silencing of <i>SlRBP1i> significantly reduced the expression of photosynthesis-related genes, such as PsaE, PsaL, and PsbY, and affected the yield of tomato fruits through photosynthesis.
RNA
;
Solanum lycopersicum/genetics*
;
Photosynthesis/genetics*
;
Chlorophyll
;
RNA-Binding Proteins/genetics*
2.RNPS1 stabilizes NAT10 protein to facilitate translation in cancer via tRNA ac4C modification.
Xiaochen WANG ; Rongsong LING ; Yurong PENG ; Weiqiong QIU ; Demeng CHEN
International Journal of Oral Science 2024;16(1):6-6
Existing studies have underscored the pivotal role of N-acetyltransferase 10 (NAT10) in various cancers. However, the outcomes of protein-protein interactions between NAT10 and its protein partners in head and neck squamous cell carcinoma (HNSCC) remain unexplored. In this study, we identified a significant upregulation of RNA-binding protein with serine-rich domain 1 (RNPS1) in HNSCC, where RNPS1 inhibits the ubiquitination degradation of NAT10 by E3 ubiquitin ligase, zinc finger SWIM domain-containing protein 6 (ZSWIM6), through direct protein interaction, thereby promoting high NAT10 expression in HNSCC. This upregulated NAT10 stability mediates the enhancement of specific tRNA ac4C modifications, subsequently boosting the translation process of genes involved in pathways such as IL-6 signaling, IL-8 signaling, and PTEN signaling that play roles in regulating HNSCC malignant progression, ultimately influencing the survival and prognosis of HNSCC patients. Additionally, we pioneered the development of TRMC-seq, leading to the discovery of novel tRNA-ac4C modification sites, thereby providing a potent sequencing tool for tRNA-ac4C research. Our findings expand the repertoire of tRNA ac4C modifications and identify a role of tRNA ac4C in the regulation of mRNA translation in HNSCC.
Humans
;
DNA-Binding Proteins
;
Head and Neck Neoplasms/genetics*
;
N-Terminal Acetyltransferases
;
RNA, Transfer
;
Serine
;
Signal Transduction
;
Squamous Cell Carcinoma of Head and Neck
3.Long non-coding RNA colon cancer-associated transcript 1-Vimentin axis promoting the migration and invasion of HeLa cells.
Zhangfu LI ; Jiangbei YUAN ; Qingen DA ; Zilong YAN ; Jianhua QU ; Dan LI ; Xu LIU ; Qimin ZHAN ; Jikui LIU
Chinese Medical Journal 2023;136(19):2351-2361
BACKGROUND:
Long non-coding RNA colon cancer-associated transcript 1 (CCAT1) is involved in transforming multiple cancers into malignant cancer types. Previous studies underlining the mechanisms of the functions of CCAT1 primarily focused on its decoy for miRNAs (micro RNAs). However, the regulatory mechanism of CCAT1-protein interaction associated with tumor metastasis is still largely unknown. The present study aimed to identify proteome-wide CCAT1 partners and explored the CCAT1-protein interaction mediated tumor metastasis.
METHODS:
CCAT1-proteins complexes were purified and identified using RNA antisense purification coupled with the mass spectrometry (RAP-MS) method. The database for annotation, visualization, and integrated discovery and database for eukaryotic RNA binding proteins (EuRBPDB) websites were used to bioinformatic analyzing CCAT1 binding proteins. RNA pull-down and RNA immunoprecipitation were used to validate CCAT1-Vimentin interaction. Transwell assay was used to evaluate the migration and invasion abilities of HeLa cells.
RESULTS:
RAP-MS method worked well by culturing cells with nucleoside analog 4-thiouridine, and cross-linking was performed using 365 nm wavelength ultraviolet. There were 631 proteins identified, out of which about 60% were RNA binding proteins recorded by the EuRBPDB database. Vimentin was one of the CCAT1 binding proteins and participated in the tumor metastasis pathway. Knocked down vimetin ( VIM ) and rescued the downregulation by overexpressing CCAT1 demonstrated that CCAT1 could enhance tumor migration and invasion abilities by stabilizing Vimentin protein.
CONCLUSION
CCAT1 may bind with and stabilize Vimentin protein, thus enhancing cancer cell migration and invasion abilities.
Humans
;
HeLa Cells
;
RNA, Long Noncoding/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Vimentin/metabolism*
;
MicroRNAs/metabolism*
;
Colonic Neoplasms/genetics*
;
RNA-Binding Proteins/metabolism*
;
Gene Expression Regulation, Neoplastic/genetics*
;
Cell Movement/genetics*
4.An atlas of immune cell transcriptomes in human immunodeficiency virus-infected immunological non-responders identified marker genes that control viral replication.
Yahong CHEN ; Xin LI ; Shuran LIU ; Wen AO ; Jing LIN ; Zhenting LI ; Shouli WU ; Hanhui YE ; Xiao HAN ; Dongliang LI
Chinese Medical Journal 2023;136(22):2694-2705
BACKGROUND:
Previous studies have examined the bulk transcriptome of peripheral blood immune cells in acquired immunodeficiency syndrome patients experiencing immunological non-responsiveness. This study aimed to investigate the characteristics of specific immune cell subtypes in acquired immunodeficiency syndrome patients who exhibit immunological non-responsiveness.
METHODS:
A single-cell transcriptome sequencing of peripheral blood mononuclear cells obtained from both immunological responders (IRs) (CD4 + T-cell count >500) and immunological non-responders (INRs) (CD4 + T-cell count <300) was conducted. The transcriptomic profiles were used to identify distinct cell subpopulations, marker genes, and differentially expressed genes aiming to uncover potential genetic factors associated with immunological non-responsiveness.
RESULTS:
Among the cellular subpopulations analyzed, the ratios of monocytes, CD16 + monocytes, and exhausted B cells demonstrated the most substantial differences between INRs and IRs, with fold changes of 39.79, 11.08, and 2.71, respectively. In contrast, the CD4 + T cell ratio was significantly decreased (0.39-fold change) in INRs compared with that in IRs. Similarly, the ratios of natural killer cells and terminal effector CD8 + T cells were also lower (0.37-fold and 0.27-fold, respectively) in the INRs group. In addition to several well-characterized immune cell-specific markers, we identified a set of 181 marker genes that were enriched in biological pathways associated with human immunodeficiency virus (HIV) replication. Notably, ISG15 , IFITM3 , PLSCR1 , HLA-DQB1 , CCL3L1 , and DDX5 , which have been demonstrated to influence HIV replication through their interaction with viral proteins, emerged as significant monocyte marker genes. Furthermore, the differentially expressed genes in natural killer cells were also enriched in biological pathways associated with HIV replication.
CONCLUSIONS
We generated an atlas of immune cell transcriptomes in HIV-infected IRs and INRs. Host genes associated with HIV replication were identified as markers of, and were found to be differentially expressed in, different types of immune cells.
Humans
;
Acquired Immunodeficiency Syndrome
;
Transcriptome/genetics*
;
HIV
;
HIV Infections/genetics*
;
Leukocytes, Mononuclear/metabolism*
;
CD4-Positive T-Lymphocytes/metabolism*
;
Virus Replication
;
Membrane Proteins/metabolism*
;
RNA-Binding Proteins/metabolism*
5.CircRNA-SCAF8 promotes vascular endothelial cell pyroptosis by regulating the miR-93-5p/TXNIP axis.
Bing WANG ; Xinyu YU ; Tianchi CHEN ; Chenyang QIU ; Wei LU ; Xiangtao ZHENG ; Ziheng WU
Journal of Zhejiang University. Medical sciences 2023;52(4):473-484
OBJECTIVES:
To investigate the role and mechanism of circRNA-SR-related CTD associated factor 8 (SCAF8) in regulating endothelial cell pyroptosis in high glucose environment.
METHODS:
Human umbilical vein endothelial cells (HUVECs) were cultured and divided into six groups. The normal control group and high glucose control group were cultured in cell culture medium with 5 and 33 mmol/L glucose, respectively. The RNA control group, circRNA-SCAF8 inhibition group, miR-93-5p overexpression group and miR-93-5p inhibition group were added with non-functional siRNA, circRNA-SCAF8 inhibitor, miR-93-5p overexpression molecule and miR-93-5p inhibitor in high glucose environment, respectively. Cell viability and pyroptosis were detected by cell counting kit-8 (CCK-8) assay, flow cytometry and Hoechst 33342/propidium iodide fluorescence double staining. Western blotting and enzyme-linked immunosorbent assay were used to detect the expression of pyroptosis-related factors including apoptosis-associated speck-like protein containing a CARD (ASC), cysteine aspartic acid specific protease-1 (caspase-1) and Gasdermin D (GSDMD), NOD like receptor protein 3 (NLRP-3), thioredoxin interacting proteins (TXNIP), IL-18 and IL-1β. The expression of circRNA-SCAF8, miR-93-5p and <i>TXNIPi> was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Fluorescence <i>in situi> hybridization (FISH) was used to locate circRNA-SCAF8 and miR-93-5p. Dual luciferase assay was used to verify the targeted regulatory relationship between miR-93-5p and upstream and downstream molecules.
RESULTS:
Compared with the RNA control group, the cell survival rate of circRNA-SCAF8 inhibition group and miR-93-5p overexpression group increased (both <i>Pi><0.01), the pyroptosis decreased (both <i>Pi><0.01), and the expressions of pyroptosis-related factors such as TXNIP, NLRP-3, caspase-1, GSDMD, ASC, IL-18 and IL-1β were significantly decreased (all <i>Pi><0.05). The expression of miR-93-5p was significantly increased after inhibition of circRNA-SCAF8 (<i>Pi><0.01), and the expression of circRNA-SCAF8 tended to decrease after overexpression of miR-93-5p, but with no statistical significance (<i>Pi>>0.05). Dual luciferase assay showed that miR-93-5p downre-gulated circRNA-SCAF8 expression by binding to the 3 ´ UTR region of circRNA-SCAF8, and miR-93-5p downregulated <i>TXNIPi> expression by binding to the 3 ´ UTR region of <i>TXNIPi>. FISH showed that circRNA-SCAF8 and miR-93-5p were both located in the cytoplasm and were highly associated in the cells. qRT-PCR showed that the relative expression of <i>TXNIPi> increased or decreased after overexpression or inhibition of miR-93-5p compared with the RNA control group, respectively (both <i>Pi><0.05), suggesting that miR-93-5p could regulate <i>TXNIPi> gene expression.
CONCLUSIONS
CircRNA-SCAF8/miR-93-5p/TXNIP axis is involved in the regulation of pyroptosis in HUVECs under high glucose.
Humans
;
Factor VIII
;
RNA, Circular
;
Endothelial Cells
;
Interleukin-18
;
Pyroptosis
;
In Situ Hybridization, Fluorescence
;
Caspase 1
;
MicroRNAs/genetics*
;
Carrier Proteins/genetics*
;
RNA-Binding Proteins
6.Research Advances of RAD51AP1 in Tumor Progression and Drug Resistance.
Renwang LIU ; Mingbiao LI ; Zixuan HU ; Zuoqing SONG ; Jun CHEN
Chinese Journal of Lung Cancer 2023;26(9):701-708
The genomic instability may lead to an initiation of cancer in many organisms. Homologous recombination repair (HRR) is vital in maintaining cellular genomic stability. RAD51 associated protein 1 (RAD51AP1), which plays a crucial role in HRR and primarily participates in forming D-loop, was reported as an essential protein for maintaining cellular genomic stability. However, recent studies showed that RAD51AP1 was significantly overexpressed in various cancer types and correlated with poor prognosis. These results suggested that RAD51AP1 may play a significant pro-cancer effect in multiple cancers. The underlying mechanism is still unclear. Cancer stemness-maintaining effects of RAD51AP1 might be considered as the most reliable mechanism. Meanwhile, RAD51AP1 also promoted resistance to radiation therapy and chemotherapy in many cancers. Thus, researches focused on RAD51AP1, and its regulatory molecules may provide new targets for overcoming cancer progression and treatment resistance. Here, we reviewed the latest research on RAD51AP1 in cancers and summarized its differential expression and prognostic implications. In this review, we also outlined the potential mechanisms of its pro-cancer and drug resistance-promoting effects to provide several potential directions for further research.
.
Humans
;
DNA-Binding Proteins/metabolism*
;
RNA-Binding Proteins/metabolism*
;
Lung Neoplasms
;
DNA Repair
;
Genomic Instability
;
Rad51 Recombinase/metabolism*
7.Construction of predictive ceRNA network and identification of the patterns of immune cells infiltrated in Graves ' ophthalmopathy.
Jiamin CAO ; Haiyan CHEN ; Bingyu XIE ; Yizhi CHEN ; Wei XIONG ; Mingyuan LI
Journal of Central South University(Medical Sciences) 2023;48(8):1185-1196
OBJECTIVES:
Graves' ophthalmopathy (GO) is a multifactorial disease, and the mechanism of non coding RNA interactions and inflammatory cell infiltration patterns are not fully understood. This study aims to construct a competing endogenous RNA (ceRNA) network for this disease and clarify the infiltration patterns of inflammatory cells in orbital tissue to further explore the pathogenesis of GO.
METHODS:
The differentially expressed genes were identified using the GEO2R analysis tool. The Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology analysis were used to analyze differential genes. RNA interaction relationships were extracted from the RNA interactome database. Protein-protein interactions were identified using the STRING database and were visualized using Cytoscape. StarBase, miRcode, and DIANA-LncBase Experimental v.2 were used to construct ceRNA networks together with their interacted non-coding RNA. The CIBERSORT algorithm was used to detect the patterns of infiltrating immune cells in GO using R software.
RESULTS:
A total of 114 differentially expressed genes for GO and 121 pathways were detected using both the KEGG and gene ontology enrichment analysis. Four hub genes (<i>SRSF6, DDX5, HNRNPCi>,and <i>HNRNPMi>) were extracted from protein-protein interaction using cytoHubba in Cytoscape, 104 nodes and 142 edges were extracted, and a ceRNA network was identified (<i>MALAT1-MIR21-DDX5i>). The results of immune cell analysis showed that in GO, the proportions of CD8+ T cells and CD4+ memory resting T cells were upregulated and downregulated, respectively. The proportion of CD4 memory resting T cells was positively correlated with the expression of <i>MALAT1, MIR21, and DDX5i>.
CONCLUSIONS
This study has constructed a ceRNA regulatory network (MALAT1-MIR21-DDX5) in GO orbital tissue, clarifying the downregulation of the proportion of CD4+ stationary memory T cells and their positive regulatory relationship with ceRNA components, further revealing the pathogenesis of GO.
Humans
;
CD8-Positive T-Lymphocytes
;
RNA, Long Noncoding/genetics*
;
Algorithms
;
CD4-Positive T-Lymphocytes
;
Down-Regulation
;
Graves Ophthalmopathy/genetics*
;
Gene Regulatory Networks
;
MicroRNAs/genetics*
;
Serine-Arginine Splicing Factors
;
Phosphoproteins
8.Spatial expression of the nonsense-mediated mRNA decay factors UPF3A and UPF3B among mouse tissues.
Xin MA ; Yan LI ; Chen CHENGYAN ; Yanmin SHEN ; Hua WANG ; Tangliang LI
Journal of Zhejiang University. Science. B 2023;24(11):1062-1068
无义介导的信使RNA(mRNA)降解途径(nonsense-mediated mRNA decay,简称为NMD)是真核生物细胞内一种重要的基因转录后表达调控机制,它积极参与一系列细胞生理和生化过程,控制细胞命运和生命体的组织稳态。NMD的缺陷会导致人类疾病,如神经发育障碍、肿瘤发生和自身免疫疾病等。UPF3 (Up-frameshift protein 3)是一个核心的NMD因子,它最早在酵母中被发现。UPF3A和UPF3B是UPF3在生物进化到脊椎动物阶段出现的两个旁系同源物,在NMD中具有激活或抑制的作用。以往研究发现,UPF3B蛋白几乎在所有哺乳动物器官中均有表达,而UPF3A蛋白在除睾丸外的大多数哺乳动物组织中难以被检测到。解释这一现象的假说为:在NMD途径中,UPF3B具有比UPF3A更高的竞争性结合UPF2的能力,UPF3B和UPF2的结合促使UPF3A成为游离状态,而游离的UPF3A蛋白不稳定且易被降解。此假说提示UPF3A和UPF3B在NMD中存在拮抗作用。在本研究中,我们重新定量评估了UPF3A和UPF3B在野生型成年雄性和雌性小鼠的9个主要组织和生殖器官中的mRNA和蛋白表达,结果证实UPF3A在雄性生殖细胞中表达量最高。令人惊讶的是,我们发现在包括大脑和胸腺在内的大多数组织中,UPF3A与UPF3B的蛋白水平相当,而在小鼠脾、肺组织中,UPF3A表达高于UPF3B。公共基因表达数据进一步支持了上述发现。因此,我们的研究表明了UPF3A是小鼠组织中普遍表达的NMD因子。同时,该研究结果推测:在生理条件下,UPF3A和UPF3B蛋白之间不存在竞争抑制,且UPF3A在多种哺乳动物组织的稳态中发挥重要作用。
Animals
;
Humans
;
Mice
;
HeLa Cells
;
Nonsense Mediated mRNA Decay
;
RNA-Binding Proteins/genetics*
9.LITTIP/Lgr6/HnRNPK complex regulates cementogenesis via Wnt signaling.
Tiancheng LI ; Han WANG ; Yukun JIANG ; Shuo CHEN ; Danyuan HUANG ; Zuping WU ; Xing YIN ; Chenchen ZHOU ; Yuyu LI ; Shujuan ZOU
International Journal of Oral Science 2023;15(1):33-33
Orthodontically induced tooth root resorption (OIRR) is a serious complication during orthodontic treatment. Stimulating cementum repair is the fundamental approach for the treatment of OIRR. Parathyroid hormone (PTH) might be a potential therapeutic agent for OIRR, but its effects still lack direct evidence, and the underlying mechanisms remain unclear. This study aims to explore the potential involvement of long noncoding RNAs (lncRNAs) in mediating the anabolic effects of intermittent PTH and contributing to cementum repair, as identifying lncRNA-disease associations can provide valuable insights for disease diagnosis and treatment. Here, we showed that intermittent PTH regulates cell proliferation and mineralization in immortalized murine cementoblast OCCM-30 via the regulation of the Wnt pathway. In vivo, daily administration of PTH is sufficient to accelerate root regeneration by locally inhibiting Wnt/β-catenin signaling. Through RNA microarray analysis, lncRNA LITTIP (LGR6 intergenic transcript under intermittent PTH) is identified as a key regulator of cementogenesis under intermittent PTH. Chromatin isolation by RNA purification (ChIRP) and RNA immunoprecipitation (RIP) assays revealed that LITTIP binds to mRNA of leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) and heterogeneous nuclear ribonucleoprotein K (HnRNPK) protein. Further co-transfection experiments confirmed that LITTIP plays a structural role in the formation of the LITTIP/Lgr6/HnRNPK complex. Moreover, LITTIP is able to promote the expression of LGR6 via the RNA-binding protein HnRNPK. Collectively, our results indicate that the intermittent PTH administration accelerates root regeneration via inhibiting Wnt pathway. The lncRNA LITTIP is identified to negatively regulate cementogenesis, which activates Wnt/β-catenin signaling via high expression of LGR6 promoted by HnRNPK.
Mice
;
Animals
;
Cementogenesis
;
Wnt Signaling Pathway
;
beta Catenin/metabolism*
;
Heterogeneous-Nuclear Ribonucleoprotein K/metabolism*
;
RNA, Long Noncoding/genetics*
;
Parathyroid Hormone
;
Receptors, G-Protein-Coupled/metabolism*

Result Analysis
Print
Save
E-mail