1.Silencing Histone Deacetylase 7 Alleviates Transforming Growth Factor-β1-Induced Profibrotic Responses in Fibroblasts Derived from Peyronie's Plaque.
Dong Hyuk KANG ; Guo Nan YIN ; Min Ji CHOI ; Kang Moon SONG ; Kalyan GHATAK ; Nguyen Nhat MINH ; Mi Hye KWON ; Do Hwan SEONG ; Ji Kan RYU ; Jun Kyu SUH
The World Journal of Men's Health 2018;36(2):139-146
PURPOSE: Epigenetic modifications, such as histone acetylation/deacetylation and DNA methylation, play a crucial role in the pathogenesis of inflammatory disorders and fibrotic diseases. The aim of this study was to study the differential gene expression of histone deacetylases (HDACs) in fibroblasts isolated from plaque tissue of Peyronie's disease (PD) or normal tunica albuginea (TA) and to examine the anti-fibrotic effect of small interfering RNA (siRNA)-mediated silencing of HDAC7 in fibroblasts derived from human PD plaque. MATERIALS AND METHODS: For differential gene expression study, we performed reverse-transcriptase polymerase chain reaction for HDAC isoforms (1–11) in fibroblasts isolated from PD plaque or normal TA. Fibroblasts isolated from PD plaque were pretreated with HDAC7 siRNA (100 pmol) and then stimulated with transforming growth factor-β1 (TGF-β1, 10 ng/mL). Protein was extracted from treated fibroblasts for Western blotting. We also performed immunocytochemistry to detect the expression of extracellular matrix proteins and to examine the effect of HDAC2 siRNA on the TGF-β1-induced nuclear translocation of Smad2/3 and myofibroblastic differentiation. RESULTS: The mRNA expression of HDAC2, 3, 4, 5, 7, 8, 10, and 11 was higher in fibroblasts isolated from PD plaque than in fibroblasts isolated from normal TA tissue. Knockdown of HDAC7 in PD fibroblasts inhibited TGF-β1-induced nuclear shuttle of Smad2 and Smad3, transdifferentiation of fibroblasts into myofibroblasts, and abrogated TGF-β1-induced production of extracellular matrix protein. CONCLUSIONS: These findings suggest that specific inhibition of HDAC7 with RNA interference may represent a promising epigenetic therapy for PD.
Blotting, Western
;
DNA Methylation
;
Epigenomics
;
Extracellular Matrix
;
Extracellular Matrix Proteins
;
Fibroblasts*
;
Fibrosis
;
Gene Expression
;
Histone Deacetylases*
;
Histones*
;
Humans
;
Immunohistochemistry
;
Male
;
Myofibroblasts
;
Penile Induration
;
Polymerase Chain Reaction
;
Protein Isoforms
;
RNA Interference
;
RNA, Messenger
;
RNA, Small Interfering
;
Transforming Growth Factors
2.Clusterin Induces MUC5AC Expression via Activation of NF-κB in Human Airway Epithelial Cells.
Chang Hoon BAE ; Hyung Gyun NA ; Yoon Seok CHOI ; Si Youn SONG ; Yong Dae KIM
Clinical and Experimental Otorhinolaryngology 2018;11(2):124-132
OBJECTIVES: Clusterin (CLU) is known as apolipoprotein J, and has three isoforms with different biological functions. CLU is associated with various diseases such as Alzheimer disease, atherosclerosis, and some malignancies. Recent studies report an association of CLU with inflammation and immune response in inflammatory airway diseases. However, the effect of CLU on mucin secretion of airway epithelial cells has not yet been understood. Therefore, the effect and brief signaling pathway of CLU on MUC5AC (as a major secreted mucin) expression were investigated in human airway epithelial cells. METHODS: In the tissues of nasal polyp and normal inferior turbinate, the presence of MUC5AC and CLU was investigated using immunohistochemical stain and Western blot analysis. In mucin-producing human NCI-H292 airway epithelial cells and primary cultures of normal nasal epithelial cells, the effect and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway of CLU on MUC5AC expression were investigated using immunohistochemical stain, reverse transcription-polymerase chain reaction, real-time polymerase chain reaction, enzyme immunoassay, and Western blot analysis. RESULTS: In the nasal polyps, MUC5AC and CLU were abundantly present in the epithelium on immunohistochemical stain, and nuclear CLU (nCLU) was strongly detected on Western blot analysis. In human NCI-H292 airway epithelial cells or the primary cultures of normal nasal epithelial cells, recombinant nCLU increased MUC5AC expression, and significantly activated phosphorylation of NF-κB. And BAY 11-7085 (a specific NF-κB inhibitor) and knockdown of NF-κB by NF-κB siRNA (small interfering RNA) significantly attenuated recombinant nCLU-induced MUC5AC expression. CONCLUSION: These results suggest that nCLU induces MUC5AC expression via the activation of NF-κB signaling pathway in human airway epithelial cells.
Alzheimer Disease
;
Atherosclerosis
;
B-Lymphocytes
;
Bays
;
Blotting, Western
;
Clusterin*
;
Epithelial Cells*
;
Epithelium
;
Humans*
;
Immunoenzyme Techniques
;
Inflammation
;
Mucins
;
Nasal Polyps
;
NF-kappa B
;
Phosphorylation
;
Protein Isoforms
;
Real-Time Polymerase Chain Reaction
;
RNA, Small Interfering
;
Turbinates
3.Comprehensive Transcriptome Profiling of Balding and Non-Balding Scalps in Trichorhinophalangeal Syndrome Type I Patient.
Yun Ji KIM ; Byulee YOON ; Kyudong HAN ; Byung Cheol PARK
Annals of Dermatology 2017;29(5):597-601
BACKGROUND: Trichorhinophalangeal syndrome (TRPS) patients tend to have alopecia that appears to be androgenetic, and this genetic model might give clues to the pathogenesis of hair loss or hair morphogenesis. OBJECTIVE: This study was conducted to identify additional genetic evidence of TRPS and hair morphogenesis from a TRPS patient. METHODS: From one TRPS type I patient, we extracted RNA and profiled whole transcriptome in non-balding and balding scalp areas using high-throughput RNA sequencing. RESULTS: We found a total of 26,320 genes, which comprised 14,892 known genes with new isoforms and 4,883 novel genes from the non-balding and balding areas. Among these, a total of 1,242 genes showed different expression in the two scalp areas (p<0.05 and log2 fold-change >0). Several genes related to the skin and hair, alopecia, and the TRPS1 gene were validated by qRT-PCR. Twelve of 15 genes (KRT6C, KRTAP3-1, MKI67, GPRC5D, TYRP1, DSC1, PMEL, WIF1, SOX21, TINAG, PTGDS, and TRPS1) were down-regulated (10 genes: p<0.01; SOX21 and PTGDS: p>0.05), and the three other genes (HBA2, GAL, and DES) were up-regulated (p<0.01) in the balding scalp. Many genes related to keratin and hair development were down-regulated in the balding scalp of the TRPS type I patient. In particular, the TRPS1 gene might be related to androgen metabolism and hair morphogenesis. CONCLUSION: Our result could suggest a novel perspective and evidence to support further study of TRPS and hair morphogenesis.
Alopecia
;
Gene Expression Profiling*
;
Hair
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Metabolism
;
Models, Genetic
;
Morphogenesis
;
Protein Isoforms
;
RNA
;
Scalp*
;
Skin
;
Transcriptome*
4.Role of carbonic anhydrases in skin wound healing.
Harlan BARKER ; Marleena AALTONEN ; Peiwen PAN ; Maria VÄHÄTUPA ; Pirkka KAIPIAINEN ; Ulrike MAY ; Stuart PRINCE ; Hannele UUSITALO-JÄRVINEN ; Abdul WAHEED ; Silvia PASTOREKOVÁ ; William S SLY ; Seppo PARKKILA ; Tero AH JÄRVINEN
Experimental & Molecular Medicine 2017;49(5):e334-
Skin wound closure occurs when keratinocytes migrate from the edge of the wound and re-epithelialize the epidermis. Their migration takes place primarily before any vascularization is established, that is, under hypoxia, but relatively little is known regarding the factors that stimulate this migration. Hypoxia and an acidic environment are well-established stimuli for cancer cell migration. The carbonic anhydrases (CAs) contribute to tumor cell migration by generating an acidic environment through the conversion of carbon dioxide to bicarbonate and a proton. On this basis, we explored the possible role of CAs in tissue regeneration using mouse skin wound models. We show that the expression of mRNAs encoding CA isoforms IV and IX are increased (~25 × and 4 ×, respectively) during the wound hypoxic period (days 2–5) and that cells expressing CAs form a band-like structure beneath the migrating epidermis. RNA-Seq analysis suggested that the CA IV-specific signal in the wound is mainly derived from neutrophils. Due to the high level of induction of CA IV in the wound, we treated skin wounds locally with recombinant human CA IV enzyme. Recombinant CA IV significantly accelerated wound re-epithelialization. Thus, CA IV could contribute to wound healing by providing an acidic environment in which the migrating epidermis and neutrophils can survive and may offer novel opportunities to accelerate wound healing under compromised conditions.
Animals
;
Anoxia
;
Carbon Dioxide
;
Carbon*
;
Carbonic Anhydrases*
;
Cell Movement
;
Epidermis
;
Humans
;
Keratinocytes
;
Mice
;
Neutrophils
;
Protein Isoforms
;
Protons
;
Re-Epithelialization
;
Regeneration
;
RNA, Messenger
;
Skin*
;
Wound Healing*
;
Wounds and Injuries*
5.Hydroquinone suppresses IFN-β expression by targeting AKT/IRF3 pathway.
Yong KIM ; Han Gyung KIM ; Sang Yun HAN ; Deok JEONG ; Woo Seok YANG ; Jung Il KIM ; Ji Hye KIM ; Young Su YI ; Jae Youl CHO
The Korean Journal of Physiology and Pharmacology 2017;21(5):547-554
Previous studies have demonstrated the role of hydroquinone (HQ), a hydroxylated benzene metabolite, in modulating various immune responses; however, its role in macrophage-mediated inflammatory responses is not fully understood. In this study, the role of HQ in inflammatory responses and the underlying molecular mechanism were explored in macrophages. HQ down-regulated the expression of interferon (IFN)-β mRNA in LPS-stimulated RAW264.7 cells without any cytotoxicity and suppressed interferon regulatory factor (IRF)-3-mediated luciferase activity induced by TIR-domain-containing adapter-inducing interferon-β (TRIF) and TANK-binding kinase 1 (TBK1). A mechanism study revealed that HQ inhibited IRF-3 phosphorylation induced by lipopolysaccharide (LPS), TRIF, and AKT by suppressing phosphorylation of AKT, an upstream kinase of the IRF-3 signaling pathway. IRF-3 phosphorylation is highly induced by wild-type AKT and poorly induced by an AKT mutant, AKT C310A, which is mutated at an inhibitory target site of HQ. We also showed that HQ inhibited IRF-3 phosphorylation by targeting all three AKT isoforms (AKT1, AKT2, and AKT3) in RAW264.7 cells and suppressed IRF-3-mediated luciferase activities induced by AKT in HEK293 cells. Taken together, these results strongly suggest that HQ inhibits the production of a type I IFN, IFN-β, by targeting AKTs in the IRF-3 signaling pathway during macrophage-mediated inflammation.
Benzene
;
HEK293 Cells
;
Inflammation
;
Interferons
;
Luciferases
;
Macrophages
;
Phosphorylation
;
Phosphotransferases
;
Protein Isoforms
;
RNA, Messenger
6.Non-catalytic roles for TET1 protein negatively regulating neuronal differentiation through srGAP3 in neuroblastoma cells.
Jie GAO ; Yue MA ; Hua-Lin FU ; Qian LUO ; Zhen WANG ; Yu-Huan XIAO ; Hao YANG ; Da-Xiang CUI ; Wei-Lin JIN
Protein & Cell 2016;7(5):351-361
The methylcytosine dioxygenases TET proteins (TET1, TET2, and TET3) play important regulatory roles in neural function. In this study, we investigated the role of TET proteins in neuronal differentiation using Neuro2a cells as a model. We observed that knockdown of TET1, TET2 or TET3 promoted neuronal differentiation of Neuro2a cells, and their overexpression inhibited VPA (valproic acid)-induced neuronal differentiation, suggesting all three TET proteins negatively regulate neuronal differentiation of Neuro2a cells. Interestingly, the inducing activity of TET protein is independent of its enzymatic activity. Our previous studies have demonstrated that srGAP3 can negatively regulate neuronal differentiation of Neuro2a cells. Furthermore, we revealed that TET1 could positively regulate srGAP3 expression independent of its catalytic activity, and srGAP3 is required for TET-mediated neuronal differentiation of Neuro2a cells. The results presented here may facilitate better understanding of the role of TET proteins in neuronal differentiation, and provide a possible therapy target for neuroblastoma.
Animals
;
Catalytic Domain
;
Cell Differentiation
;
drug effects
;
physiology
;
Cell Line, Tumor
;
DNA-Binding Proteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Enzyme Inhibitors
;
pharmacology
;
GTPase-Activating Proteins
;
genetics
;
metabolism
;
Immunohistochemistry
;
Mice
;
Microscopy, Fluorescence
;
Neuroblastoma
;
metabolism
;
pathology
;
Protein Isoforms
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Proto-Oncogene Proteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Messenger
;
metabolism
;
RNA, Small Interfering
;
metabolism
;
Valproic Acid
;
pharmacology
7.Phorbol myristate acetate suppresses breast cancer cell growth via down-regulation of P-Rex1 expression.
Chuu-Yun A WONG ; Haihong JIANG ; Peter W ABEL ; Margaret A SCOFIELD ; Yan XIE ; Taotao WEI ; Yaping TU
Protein & Cell 2016;7(6):445-449
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Down-Regulation
;
drug effects
;
Female
;
Guanine Nucleotide Exchange Factors
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Humans
;
Indoles
;
pharmacology
;
MCF-7 Cells
;
Maleimides
;
pharmacology
;
Protein Isoforms
;
genetics
;
metabolism
;
Protein Kinase C
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
metabolism
;
Receptor, ErbB-2
;
genetics
;
metabolism
;
Tetradecanoylphorbol Acetate
;
toxicity
8.Herbal Extracts Induce Dermal Papilla Cell Proliferation of Human Hair Follicles.
Hosein RASTEGAR ; Hamidreza Ahmadi ASHTIANI ; Mahmoud AGHAEI ; Behrooz BARIKBIN ; Amirohushang EHSANI
Annals of Dermatology 2015;27(6):667-675
BACKGROUND: The number of people suffering from balding or hair thinning is increasing, despite the advances in various medical therapies. Therefore, it is highly important to develop new therapies to inhibit balding and increase hair proliferation. OBJECTIVE: We investigated the effects of herbal extracts commonly used for improving balding in traditional medicine to identify potential agents for hair proliferation. METHODS: The expression levels of 5alpha-reductase isoforms (type I and II) were analyzed using quantitative real-time reverse transcription polymerase chain reaction in the human follicular dermal papilla cells (DPCs). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylteterazolium bromide and bromodeoxyuridine tests were used to evaluate the cell proliferation effect of herbal extracts in DPCs. The expression levels of extracellular signal-regulated kinase (ERK), Akt, cyclin D1, cyclin-dependent kinase 4 (Cdk4), B-cell lymphoma (Bcl-2) and Bcl-2-associated X protein (Bax) were measured using western blot analysis. RESULTS: The 5alpha-reductase isoform mRNAs and proteins were detected in the cultured DPCs, and the expression level of 5alpha-R2 in DPCs in the presence of the herbal extracts was gradually decreased. Herbal extracts were found to significantly increase the proliferation of human DPCs at concentrations ranging from 1.5% to 4.5%. These results show that the herbal extracts tested affected the protein expressions of ERK, Akt, cyclin D1, Cdk4, Bcl-2, and Bax in DPCs. CONCLUSION: These results suggest that herbal extracts exert positive effects on hair proliferation via ERK, Akt, cyclin D1, and Cdk4 signaling in DPCs; they also suggest that herbal extracts could be a great alternative therapy for increasing hair proliferation.
bcl-2-Associated X Protein
;
Blotting, Western
;
Bromodeoxyuridine
;
Cell Proliferation*
;
Cyclin D1
;
Cyclin-Dependent Kinase 4
;
Hair Follicle*
;
Hair*
;
Humans*
;
Lymphoma, B-Cell
;
Medicine, Traditional
;
Phosphotransferases
;
Polymerase Chain Reaction
;
Protein Isoforms
;
Reverse Transcription
;
RNA, Messenger
9.Specific Expression of Aplysia Phosphodiesterase 4 in Bag Cells Revealed by in situ Hybridization Analysis.
Deok Jin JANG ; Hyoung F KIM ; Jae Hoon SIM ; Chae Seok LIM ; Bong Kiun KAANG
Experimental Neurobiology 2015;24(3):246-251
Phosphodiesterases (PDEs) play a key role in the regulation of cyclic adenosine monophosphate (cAMP), which in turn mediates various cellular functions including learning and memory. We previously cloned and characterized three PDE4 isoforms (ApPDE4) from Aplysia kurodai. Using reverse transcription polymerase chain reaction (RT-PCR), we found that ApPDE4 isoforms are primarily expressed in the central nervous system. However, the detailed distribution of ApPDE4 mRNA in Aplysia individual ganglions was not evident. In this study, to determine the distribution of ApPDE4 mRNAs in Aplysia ganglions, we performed in situ hybridization (ISH) using a probe targeting ApPDE4, including the PDE catalytic domain. Interestingly, we found the strongest ISH-positive signals in the symmetrical bag cell clusters of the abdominal ganglion. The R2, R14, L7, L2 and L11 neurons in the abdominal ganglion, LP1 neuron in pleural ganglion, and metacerebral (MCC) neurons were ISH-positive. Mechanosensory neurons of the sensory cluster were also stained on the ventral aspect of the right and left pleural ganglia. Taken together, we found the detailed distribution of ApPDE4 mRNA in Aplysia ganglion and support their roles in serotonin (5-HT)-induced synaptic facilitation of Aplysia mechanosensory neurons.
Adenosine Monophosphate
;
Aplysia*
;
Catalytic Domain
;
Central Nervous System
;
Clone Cells
;
Cyclic Nucleotide Phosphodiesterases, Type 4*
;
Ganglia
;
Ganglion Cysts
;
In Situ Hybridization*
;
Learning
;
Memory
;
Neurons
;
Phosphoric Diester Hydrolases
;
Polymerase Chain Reaction
;
Protein Isoforms
;
Reverse Transcription
;
RNA, Messenger
;
Serotonin
10.Expression of osteopontin splice variant and its clinical significance in gastric cancer.
Xianjun SUN ; Longgang WANG ; Wenhong HOU ; Yanliang LI ; Liqing LIU ; Wenshu ZUO ; Jinming YU
Chinese Journal of Oncology 2015;37(6):427-430
OBJECTIVETo investigate the expression of osteopontin (OPN) splice variant mRNA, including the three isoforms OPN-A, OPN-B, and OPN-C, to explore its correlation with clinicopathologic features in gastric cancer, and to elucidate their role in tumor invasion and distant metastasis of gastric cancer.
METHODSThe expression of OPN-A, OPN-B and OPN-C mRNA were detected by real-time reverse transcriptase-polymerase chain reaction in 66 gastric cancer tissues. The relationship between the expression of OPN-A, OPN-B and OPN-C mRNA and clinicopathologic features of gastric cancer was analyzed.
RESULTSThe expression of OPN-C mRNA in the gastric cancer tissue was 3.21-fold higher than that in peritumoral mucosal tissue, showing a significant difference between them (P < 0.001). OPN-C mRNA expression was correlated with the depth of tumor invasion, tumor diameter, lymph node meatastasis, distant meatastasis and had no correlation with differentiation grades. The low expression of OPN-C mRNA was correlated with long survival benefit (P = 0.03). The expression of OPN-A and OPN-B mRNA had no significant relationship with clinicopathologic features of gastric cancer.
CONCLUSIONSOne of the isoform of osteopontin (OPN) OPN-C mRNA is overexpressed in gastric cancer. The overexpression of OPN-C mRNA may reflect the progression and is associated with the prognosis of gastric cancer. OPN-C mRNA may have value as a prognostic biomarker in gastric cancer. However, the expression of OPN-A and OPN-B are not correlated with the progression and metastasis of gastric cancer.
Disease Progression ; Gastric Mucosa ; metabolism ; Humans ; Lymph Nodes ; Lymphatic Metastasis ; Neoplasm Invasiveness ; Neoplasm Proteins ; genetics ; Osteopontin ; genetics ; Prognosis ; Protein Isoforms ; genetics ; RNA, Messenger ; metabolism ; Real-Time Polymerase Chain Reaction ; Stomach Neoplasms ; genetics ; mortality ; pathology

Result Analysis
Print
Save
E-mail