1.Clinical feature difference between juvenile amyotrophic lateral sclerosis with SPTLC1 and FUS mutations.
Peishan WANG ; Qiao WEI ; Hongfu LI ; Zhi-Ying WU
Chinese Medical Journal 2023;136(2):176-183
BACKGROUND:
Juvenile amyotrophic lateral sclerosis (JALS) is an uncommon form of amyotrophic lateral sclerosis whose age at onset (AAO) is defined as prior to 25 years. FUS mutations are the most common cause of JALS. SPTLC1 was recently identified as a disease-causative gene for JALS, which has rarely been reported in Asian populations. Little is known regarding the difference in clinical features between JALS patients carrying FUS and SPTLC1 mutations. This study aimed to screen mutations in JALS patients and to compare the clinical features between JALS patients with FUS and SPTLC1 mutations.
METHODS:
Sixteen JALS patients were enrolled, including three newly recruited patients between July 2015 and August 2018 from the Second Affiliated Hospital, Zhejiang University School of Medicine. Mutations were screened by whole-exome sequencing. In addition, clinical features such as AAO, onset site and disease duration were extracted and compared between JALS patients carrying FUS and SPTLC1 mutations through a literature review.
RESULTS:
A novel and de novo SPTLC1 mutation (c.58G>A, p.A20T) was identified in a sporadic patient. Among 16 JALS patients, 7/16 carried FUS mutations and 5/16 carried respective SPTLC1 , SETX , NEFH , DCTN1 , and TARDBP mutations. Compared with FUS mutation patients, those with SPTLC1 mutations had an earlier AAO (7.9 ± 4.6 years vs. 18.1 ± 3.9 years, P < 0.01), much longer disease duration (512.0 [416.7-607.3] months vs. 33.4 [21.6-45.1] months, P < 0.01), and no onset of bulbar.
CONCLUSION
Our findings expand the genetic and phenotypic spectrum of JALS and help to better understand the genotype-phenotype correlation of JALS.
Humans
;
Amyotrophic Lateral Sclerosis/genetics*
;
DNA Helicases/genetics*
;
Genetic Association Studies
;
Multifunctional Enzymes/genetics*
;
Mutation/genetics*
;
RNA Helicases/genetics*
;
RNA-Binding Protein FUS/genetics*
;
Serine C-Palmitoyltransferase/genetics*
;
Child, Preschool
;
Child
;
Adolescent
;
Young Adult
4.Genetic distribution in Chinese patients with hereditary peripheral neuropathy.
Xiao Xuan LIU ; Xiao Hui DUAN ; Shuo ZHANG ; A Ping SUN ; Ying Shuang ZHANG ; Dong Sheng FAN
Journal of Peking University(Health Sciences) 2022;54(5):874-883
OBJECTIVE:
To analyze the distribution characteristics of hereditary peripheral neuropathy (HPN) pathogenic genes in Chinese Han population, and to explore the potential pathogenesis and treatment prospects of HPN and related diseases.
METHODS:
Six hundred and fifty-six index patients with HPN were enrolled in Peking University Third Hospital and China-Japan Friendship Hospital from January 2007 to May 2022. The PMP22 duplication and deletion mutations were screened and validated by multiplex ligation probe amplification technique. The next-generation sequencing gene panel or whole exome sequencing was used, and the suspected genes were validated by Sanger sequencing.
RESULTS:
Charcot-Marie-Tooth (CMT) accounted for 74.3% (495/666) of the patients with HPN, of whom 69.1% (342/495) were genetically confirmed. The most common genes of CMT were PMP22 duplication, MFN2 and GJB1 mutations, which accounted for 71.3% (244/342) of the patients with genetically confirmed CMT. Hereditary motor neuropathy (HMN) accounted for 16.1% (107/666) of HPN, and 43% (46/107) of HPN was genetically confirmed. The most common genes of HMN were HSPB1, aminoacyl tRNA synthetases and SORD mutations, which accounted for 56.5% (26/46) of the patients with genetically confirmed HMN. Most genes associated with HMN could cause different phenotypes. HMN and CMT shared many genes (e.g. HSPB1, GARS, IGHMBP2). Some genes associated with dHMN-plus shared genes associated with amyotrophic lateral sclerosis (KIF5A, FIG4, DCTN1, SETX, VRK1), hereditary spastic paraplegia (KIF5A, ZFYVE26, BSCL2) and spinal muscular atrophy (MORC2, IGHMBP, DNAJB2), suggesting that HMN was a continuum rather than a distinct entity. Hereditary sensor and autosomal neuropathy (HSAN) accounted for a small proportion of 2.6% (17/666) in HPN. The most common pathogenic gene was SPTLC1 mutation. TTR was the main gene causing hereditary amyloid peripheral neuropathy. The most common types of gene mutations were p.A117S and p.V50M. The symptoms were characterized by late-onset and prominent autonomic nerve involvement.
CONCLUSION
CMT and HMN are the most common diseases of HPN. There is a large overlap between HMN and motor-CMT2 pathogenic genes, and some HMN pathogenic genes overlap with amyotrophic lateral sclerosis, hereditary spastic hemiplegia and spinal muscular atrophy, suggesting that there may be a potential common pathogenic pathway between different diseases.
Amyotrophic Lateral Sclerosis
;
Charcot-Marie-Tooth Disease/genetics*
;
DNA Helicases/genetics*
;
DNA-Binding Proteins/genetics*
;
Flavoproteins
;
HSP40 Heat-Shock Proteins
;
Humans
;
Intracellular Signaling Peptides and Proteins/genetics*
;
Kinesins
;
Ligases/genetics*
;
Molecular Chaperones
;
Multifunctional Enzymes
;
Muscular Atrophy, Spinal/genetics*
;
Mutation
;
Phosphoric Monoester Hydrolases
;
Protein Serine-Threonine Kinases
;
RNA Helicases/genetics*
;
RNA, Transfer
;
Transcription Factors/genetics*
5.Construction and clinical evaluation of N6-methyladenosine risk signature of YTHDC2, IGF2BP2, and HNRNPC in head and neck squamous cell carcinoma.
Qiangwei YUE ; Le XU ; Dongsheng ZHANG
West China Journal of Stomatology 2022;40(6):704-709
OBJECTIVES:
This work aimed to construct N6-methyladenosine (m6A) regulator-based prognostic signature and evaluate the prognostic value and the intervention on tumor immune microenvironment of this m6A risk signature.
METHODS:
Using transcriptome and clinical data of head and neck squamous cell carcinoma (HNSCC) from The Cancer Genome Atlas (TCGA), we profiled m6A regulators and constructed an m6A risk signature. The relationship between m6A modulation and immune function was studied by differential gene expression, cell type enrichment, and correlation analyses.
RESULTS:
Fifteen m6A regulators had aberrant expression in HNSCC. A three-gene m6A prognostic signature (i.e., YTHDC2, IGF2BP2, and HNRNPC) was constructed and identified as an independent prognostic indicator for HNSCC. The m6A regulator signature-based high-risk group revealed pro-tumoral immune microenvironment due to the dysregulation of immune-related gene expression, abnormal enrichment of multiple immunocytes, and production of immunoregulatory factors.
CONCLUSIONS
This comprehensive analysis of m6A regulators and tumor immune landscape in HNSCC revealed that the m6A signature of YTHDC2, IGF2BP2, and HNRNPC could serve as a promising biomarker for monitoring HNSCC development and may be a potential target for tumor therapy in the future.
Humans
;
Squamous Cell Carcinoma of Head and Neck/genetics*
;
Gene Expression Regulation, Neoplastic
;
Prognosis
;
Head and Neck Neoplasms/genetics*
;
Tumor Microenvironment/genetics*
;
RNA-Binding Proteins/genetics*
;
Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics*
;
RNA Helicases
6.Analysis of a child with X-linked mental retardation due to a de novo variant of DDX3X gene.
Qiong WANG ; Ying YANG ; Lili LIU ; Xiaoling TIE ; Haihong LEI ; Liyu ZHANG ; Fengyu CHE
Chinese Journal of Medical Genetics 2022;39(10):1111-1115
OBJECTIVE:
To analyze the clinical characteristics and genetic variant of a child featuring X-linked mental retardation.
METHODS:
Whole exome sequencing and Sanger sequencing were used for the detection of variant and pedigree validation, respectively. Clinical manifestation of patients with DDX3X gene variants were also reviewed.
RESULTS:
The child was found to harbor a heterozygous NM_001193416.3: c.1332_1333delCT (p.Leu445Serfs*19) variant of the DDX3X gene. The same variant was not found in either of her parents.
CONCLUSION
The child was diagnosed with X-linked mental retardation due to variant of the DDX3X gene. Above finding has enriched the spectrum of DDX3X gene variants and provided a basis for clinical diagnosis and prenatal diagnosis for this pedigrees.
Child
;
DEAD-box RNA Helicases/genetics*
;
Female
;
Heterozygote
;
Humans
;
Intellectual Disability/genetics*
;
Mental Retardation, X-Linked/genetics*
;
Mutation
;
Pedigree
;
Pregnancy
;
Exome Sequencing
7.A multiplex PCR-based sensitive and specific method for detecting Y chromosome material in patients with Turner syndrome.
Qiang ZHAO ; Shuxiong CHEN ; Hailin SUN ; Wanling YANG ; Bo BAN
Chinese Journal of Medical Genetics 2022;39(11):1216-1223
OBJECTIVE:
To develop a multiplex PCR method for a rapid detection of Y chromosome-specific sequences in patients with Turner syndrome.
METHODS:
Nine genes were selected from various regions of the Y chromosome for designing the primers, which included SRY, TBL1Y, TSPY on the short arm of the Y chromosome, DDX3Y, HSFY1, RPS4Y2 and CDY1 on the long arm of Y chromosome and SHOX in the short arm and SPRY3 in the long arm of the pseudoautosomal region (PAR) of X and Y chromosomes. A multiplex PCR method for the nine genes in Y chromosome was established and optimized. The sensitivity was tested by using different amounts of genomic DNA. A total of 36 patients with Turner syndrome and a patient with male dwarfism with karyotype of 46, X, +mar were examined by the multiplex PCR method for the existence of materials from the Y chromosome.
RESULTS:
The optimization results of the multiplex PCR reaction system (50 μL) showed that when the final concentration of upstream and downstream of each pair of primers was 0.1 μM, the multiplex PCR reaction of the 9 pairs of primers clearly amplified the target with the expected band size, and there was no non-specific amplification. The bands were clearly visible when the amount of genomic DNA in the multiple PCR reaction system was as low as 1 ng. By using the method, we have examined the 36 patients with Turner syndrome. One patient with Turner syndrome with karyotype of 45,X[40]/47XYY[21] amplified specific seven genes on Y chromosome, 35 patients with Turner syndrome amplified only two target genes SHOX and SPRY3, but not the other seven specific genes on the Y chromosome, which was in keeping with the clinical manifestations of such patients.
CONCLUSION
This study established a multiplex PCR reaction system with nine genes, which can quickly and accurately screen Y chromosome materials in patients with Turner syndrome. It has the advantages of low cost, simple operation, high specificity and rapid turn-around time, and can be used to detect Turner syndrome patients with Y chromosome material in time. The method has provided a diagnostic basis for preventive gonad resection to prevent malignant gonadal tumors.
Humans
;
Male
;
Turner Syndrome/genetics*
;
Multiplex Polymerase Chain Reaction
;
Y Chromosome
;
Karyotyping
;
DNA Primers
;
DNA
;
Chromosomes, Human, Y/genetics*
;
Transducin/genetics*
;
Minor Histocompatibility Antigens
;
DEAD-box RNA Helicases/genetics*
8.The Latest Research Progress on Myelodysplastic Syndrome Patient-derived Mesenchymal Stem Cell--Review.
Fan LI ; Hai-Ping HE ; Li-Hua ZHANG ; Xiao-Sui LING
Journal of Experimental Hematology 2022;30(4):1286-1290
Myelodysplastic syndrome (MDS) are a heterogeneous group of hematological malignancies. Currently, in addition to demethylated chemotherapy and hematopoietic stem cell transplantation, MDS patient-derived mesenchymal stem cells (MDS-MSC) play an important role in understanding the pathogenesis of MDS and related therapeutic targets. For example, abnormal expression of DICER1 gene, abnormalities of PI3K/AKT and Wnt/β-catenin signaling pathways provide new therapeutic targets for MDS. In addition, MDS-MSC is also affected by abnormal microenvironment of the body, such as inflammatory factor S100A9, as well as hypercoagulation and iron overload. In this review, genes, signaling pathways, cytokines, hematopoietic microenvironment, and the effect of therapeutic drugs for MDS-MSC were briefly summarized.
Cytokines/metabolism*
;
DEAD-box RNA Helicases/metabolism*
;
Hematologic Neoplasms/metabolism*
;
Humans
;
Mesenchymal Stem Cells
;
Myelodysplastic Syndromes/genetics*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Ribonuclease III/metabolism*
;
Tumor Microenvironment
9.UPF1 increases amino acid levels and promotes cell proliferation in lung adenocarcinoma via the eIF2α-ATF4 axis.
Lei FANG ; Huan QI ; Peng WANG ; Shiqing WANG ; Tianjiao LI ; Tian XIA ; Hailong PIAO ; Chundong GU
Journal of Zhejiang University. Science. B 2022;23(10):863-875
Up-frameshift 1 (UPF1), as the most critical factor in nonsense-mediated messenger RNA (mRNA) decay (NMD), regulates tumor-associated molecular pathways in many cancers. However, the role of UPF1 in lung adenocarcinoma (LUAD) amino acid metabolism remains largely unknown. In this study, we found that UPF1 was significantly correlated with a portion of amino acid metabolic pathways in LUAD by integrating bioinformatics and metabolomics. We further confirmed that UPF1 knockdown inhibited activating transcription factor 4 (ATF4) and Ser51 phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), the core proteins in amino acid metabolism reprogramming. In addition, UPF1 promotes cell proliferation by increasing the amino-acid levels of LUAD cells, which depends on the function of ATF4. Clinically, UPF1 mRNA expression is abnormal in LUAD tissues, and higher expression of UPF1 and ATF4 was significantly correlated with poor overall survival (OS) in LUAD patients. Our findings reveal that UPF1 is a potential regulator of tumor-associated amino acid metabolism and may be a therapeutic target for LUAD.
Activating Transcription Factor 4/genetics*
;
Adenocarcinoma of Lung
;
Amino Acids
;
Cell Proliferation
;
Eukaryotic Initiation Factor-2
;
Humans
;
Lung Neoplasms
;
RNA Helicases/metabolism*
;
RNA, Messenger/metabolism*
;
Trans-Activators/metabolism*
10.Analysis of Clinical Characteristics and Prognosis in Children with Acute Megakaryoblastic Leukemia without Down Syndrome.
Shao-Fen LIN ; Shu-Yi GUO ; Su LIU ; Jian WANG ; Ke HUANG ; Yang LI ; Jian-Pei FANG ; Dun-Hua ZHOU
Journal of Experimental Hematology 2021;29(2):374-380
OBJECTIVE:
To analyze the clinical characteristics and treatment effects of children with acute megakaryoblastic leukemia without down syndrome (non-DS-AMKL).
METHODS:
The clinical data of 19 children with non-DS-AMKL treated in the Pediatric Hematology Ward in Sun Yat-sen Memorial Hospital of Sun Yat-sen University from May 2008 to April 2018 were analyzed retrospectively. The clinical characteristics, laboratory test and treatment methods of the children were concluded. All patients were followed up to evaluate the effect of treatment.
RESULTS:
The 19 cases of children included nine male and ten female, the median age of onset was 2 years old. The clinical manifestations showed nonspecific. The median white blood cell of peripheral blood was 15.88×10
CONCLUSION
Non-DS-AMKL was rare in children and difficult to be diagnosed. Determination of MICM classification as early as possible was helpful for diagnosis, and genetic testing played an important role for diagnosis and prognosis evaluation. Early hematopoietic stem cell transplantation in patients with CR after chemotherapy might be an effective way to cure AMKL.
Child
;
Child, Preschool
;
DEAD-box RNA Helicases
;
DNA Helicases
;
Down Syndrome
;
Female
;
Humans
;
Leukemia, Megakaryoblastic, Acute/genetics*
;
Male
;
Prognosis
;
Retrospective Studies
;
Trisomy

Result Analysis
Print
Save
E-mail