1.Screening and identification of a polyurethane-degrading bacterium G-11 and its plastic degradation characteristics.
Zhitong JIANG ; Xue CHEN ; Jinhui LEI ; Huizhen XUE ; Bo ZHANG ; Xiaofan XU ; Huijing GENG ; Zhoukun LI ; Xin YAN ; Weiliang DONG ; Hui CAO ; Zhongli CUI
Chinese Journal of Biotechnology 2023;39(5):1963-1975
		                        		
		                        			
		                        			Polyurethane (PUR) plastics is widely used because of its unique physical and chemical properties. However, unreasonable disposal of the vast amount of used PUR plastics has caused serious environmental pollution. The efficient degradation and utilization of used PUR plastics by means of microorganisms has become one of the current research hotspots, and efficient PUR degrading microbes are the key to the biological treatment of PUR plastics. In this study, an Impranil DLN-degrading bacteria G-11 was isolated from used PUR plastic samples collected from landfill, and its PUR-degrading characteristics were studied. Strain G-11 was identified as Amycolatopsis sp. through 16S rRNA gene sequence alignment. PUR degradation experiment showed that the weight loss rate of the commercial PUR plastics upon treatment of strain G-11 was 4.67%. Scanning electron microscope (SEM) showed that the surface structure of G-11-treated PUR plastics was destroyed with an eroded morphology. Contact angle and thermogravimetry analysis (TGA) showed that the hydrophilicity of PUR plastics increased along with decreased thermal stability upon treatment by strain G-11, which were consistent with the weight loss and morphological observation. These results indicated that strain G-11 isolated from landfill has potential application in biodegradation of waste PUR plastics.
		                        		
		                        		
		                        		
		                        			Plastics/metabolism*
		                        			;
		                        		
		                        			Polyurethanes/chemistry*
		                        			;
		                        		
		                        			RNA, Ribosomal, 16S
		                        			;
		                        		
		                        			Bacteria/genetics*
		                        			;
		                        		
		                        			Biodegradation, Environmental
		                        			
		                        		
		                        	
2.Acute Developmental Toxicity of Panax notoginseng in Zebrafish Larvae.
Rong-Rong WANG ; Ting LI ; Lei ZHANG ; Zheng-Yan HU ; Li ZHOU ; Le-Tian SHAN ; Jia-Wei HUANG ; Lan LI
Chinese journal of integrative medicine 2023;29(4):333-340
		                        		
		                        			OBJECTIVE:
		                        			To evaluate toxicity of raw extract of Panax notoginseng (rPN) and decocted extract of PN (dPN) by a toxicological assay using zebrafish larvae, and explore the mechanism by RNA sequencing assay.
		                        		
		                        			METHODS:
		                        			Zebrafish larvae was used to evaluate acute toxicity of PN in two forms: rPN and dPN. Three doses (0.5, 1.5, and 5.0 µ g/mL) of dPN were used to treat zebrafishes for evaluating the developmental toxicity. Behavior abnormalities, body weight, body length and number of vertebral roots were used as specific phenotypic endpoints. RNA sequencing (RNA-seq) assay was applied to clarify the mechanism of acute toxicity, followed by real time PCR (qPCR) for verification. High performance liquid chromatography analysis was performed to determine the chemoprofile of this herb.
		                        		
		                        			RESULTS:
		                        			The acute toxicity result showed that rPN exerted higher acute toxicity than dPN in inducing death of larval zebrafishes (P<0.01). After daily oral intake for 21 days, dPN at doses of 0.5, 1.5 and 5.0 µ g/mL decreased the body weight, body length, and vertebral number of larval zebrafishes, indicating developmental toxicity of dPN. No other adverse outcome was observed during the experimental period. RNA-seq data revealed 38 genes differentially expressed in dPN-treated zebrafishes, of which carboxypeptidase A1 (cpa1) and opioid growth factor receptor-like 2 (ogfrl2) were identified as functional genes in regulating body development of zebrafishes. qPCR data showed that dPN significantly down-regulated the mRNA expressions of cpa1 and ogfrl2 (both P<0.01), verifying cpa1 and ogfrl2 as target genes for dPN.
		                        		
		                        			CONCLUSION
		                        			This report uncovers the developmental toxicity of dPN, suggesting potential risk of its clinical application in children.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Zebrafish/genetics*
		                        			;
		                        		
		                        			Saponins/pharmacology*
		                        			;
		                        		
		                        			Panax notoginseng/chemistry*
		                        			;
		                        		
		                        			Larva
		                        			;
		                        		
		                        			Sequence Analysis, RNA
		                        			
		                        		
		                        	
3.Establishment and preliminary application of quantitative real-time PCR assay for the detection of SARS-CoV-2 subgenomic nucleocapsid RNA.
Xiao Juan ZHU ; Yin CHEN ; Bin WU ; Yi Yue GE ; Tao WU ; Qiao QIAO ; Kang Chen ZHAO ; Lun Biao CUI
Chinese Journal of Preventive Medicine 2023;57(2):268-272
		                        		
		                        			
		                        			Objective: To establish a rapid and specific quantitative real-time PCR (qPCR) method for the detection of SARS-CoV-2 subgenomic nucleocapsid RNA (SgN) in patients with COVID-19 or environmental samples. Methods: The qPCR assay was established by designing specific primers and TaqMan probe based on the SARS-CoV-2 genomic sequence in Global Initiative of Sharing All Influenza Data (GISAID) database. The reaction conditions were optimized by using different annealing temperature, different primers and probe concentrations and the standard curve was established. Further, the specificity, sensitivity and repeatability were also assessed. The established SgN and genomic RNA (gRNA) qPCR assays were both applied to detect 21 environmental samples and 351 clinical samples containing 48 recovered patients. In the specimens with both positive gRNA and positive SgN, 25 specimens were inoculated on cells. Results: The primers and probes of SgN had good specificity for SARS-CoV-2. The minimum detection limit of the preliminarily established qPCR detection method for SgN was 1.5×102 copies/ml, with a coefficient of variation less than 1%. The positive rate of gRNA in 372 samples was 97.04% (361/372). The positive rates of SgN in positive environmental samples and positive clinical samples were 36.84% (7/19) and 49.42% (169/342), respectively. The positive rate and copy number of SgN in Wild strain were lower than those of SARS-CoV-2 Delta strain. Among the 25 SgN positive samples, 12 samples within 5 days of sampling time were all isolated with virus; 13 samples sampled for more than 12 days had no cytopathic effect. Conclusion: A qPCR method for the detection of SARS-CoV-2 SgN has been successfully established. The sensitivity, specificity and repeatability of this method are good.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			SARS-CoV-2/genetics*
		                        			;
		                        		
		                        			COVID-19/diagnosis*
		                        			;
		                        		
		                        			Subgenomic RNA
		                        			;
		                        		
		                        			Real-Time Polymerase Chain Reaction/methods*
		                        			;
		                        		
		                        			RNA, Viral/genetics*
		                        			;
		                        		
		                        			Sensitivity and Specificity
		                        			;
		                        		
		                        			Nucleocapsid/chemistry*
		                        			;
		                        		
		                        			COVID-19 Testing
		                        			
		                        		
		                        	
4.Panax notoginseng saponins improve monocrotaline-induced pulmonary arterial hypertension in rats by inhibiting ADAM10/Notch3 signaling pathway.
Sai ZHANG ; Yun-Na TIAN ; Zheng-Yang SONG ; Xiao-Ting WANG ; Xin-Yu WANG ; Jun-Peng XU ; Lin-Bo YUAN ; Wan-Tie WANG
Acta Physiologica Sinica 2023;75(4):503-511
		                        		
		                        			
		                        			In this study, we investigated the effects of Panax notoginseng saponins (PNS) on pulmonary vascular remodeling and ADAM10/Notch3 pathway in pulmonary arterial hypertension (PAH). PAH rat model was established, and male Sprague Dawley (SD) rats were randomly divided into control group, monocrotaline (MCT) group and MCT+PNS group, with 10 rats in each group. Rats in the control group were intraperitoneally injected with equal volume of normal saline. Rats in the MCT group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with the same volume of normal saline every day. Rats in the MCT+PNS group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with 50 mg/kg PNS every day. The modeling time of each group lasted for 21 days. After the model was established, the mean pulmonary artery pressure (mPAP) was measured by right heart catheterization technique, the right ventricular hypertrophy index (RVHI) was calculated, the microscopic morphology and changes of pulmonary vascular wall were observed by HE and Masson staining, and the expressions of ADAM10, Notch3, Hes-1, P27, PCNA, Caspase-3 proteins and mRNA in pulmonary vascular tissue of rats were detected by Western blot and qPCR. The expression and localization of Notch3 and α-SMA were detected by immunofluorescence staining. The protein expression of ADAM10 was detected by immunohistochemical staining. The results showed that compared with the control group, mPAP, RVHI, pulmonary vessels and collagen fibers in the MCT group were significantly increased, the expressions of ADAM10, Notch3, Hes-1, and PCNA protein and mRNA were significantly increased, while the expressions of P27 and Caspase-3 protein and mRNA were decreased significantly. Compared with the MCT group, mPAP and RVHI were significantly decreased, pulmonary vessels were significantly improved and collagen fibers were significantly reduced, the expressions of protein and mRNA of ADAM10, Notch3, Hes-1, and PCNA were decreased in MCT+PNS group, but the expressions of protein and mRNA of P27 and Caspase-3 were increased slightly. The results of immunofluorescence showed that Notch3 and α-SMA staining could overlap, which proved that Notch3 was expressed in smooth muscle cells. The expression of Notch3 in the MCT group was increased significantly compared with that in the control group, while PNS intervention decreased the expression of Notch3. Immunohistochemical staining showed that compared with the control group, the amount of ADAM10 in the MCT group was increased significantly, and the expression of ADAM10 in the MCT+PNS group was decreased compared with the MCT group. These results indicate that PNS can improve the PAH induced by MCT in rats by inhibiting ADAM10/Notch3 signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Caspase 3/metabolism*
		                        			;
		                        		
		                        			Collagen
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Hypertension, Pulmonary/drug therapy*
		                        			;
		                        		
		                        			Monocrotaline/adverse effects*
		                        			;
		                        		
		                        			Panax notoginseng/chemistry*
		                        			;
		                        		
		                        			Proliferating Cell Nuclear Antigen/pharmacology*
		                        			;
		                        		
		                        			Pulmonary Arterial Hypertension
		                        			;
		                        		
		                        			Pulmonary Artery/metabolism*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Receptor, Notch3/genetics*
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			Saline Solution
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Saponins/pharmacology*
		                        			
		                        		
		                        	
5.Effect and mechanism of Puerariae Lobatae Radix in alleviating insulin resistance in T2DM db/db mice based on intestinal flora.
Hong-Yang ZHU ; Ye LIU ; Jia-Rong LI ; Yu-Hui LIU ; Zi-Ling RONG ; Yu-Ting LI ; Shi-Yao CHANG
China Journal of Chinese Materia Medica 2023;48(17):4693-4701
		                        		
		                        			
		                        			This study aimed to examine the effect and underlying mechanism of Puerariae Lobatae Radix on insulin resistance in db/db mice with type 2 diabetes mellitus(T2DM) based on the analysis of intestinal flora. Fifty db/db mice were randomly divided into a model group(M group), a metformin group(YX group), a high-dose Puerariae Lobatae Radix group(YGG group), a medium-dose Puerariae Lobatae Radix group(YGZ group), and a low-dose Puerariae Lobatae Radix group(YGD group). Another 10 db/m mice were assigned to the normal group(K group). After continuous administration for eight weeks, body weight and blood sugar of mice were measured. Enzyme linked immunosorbent assay(ELISA) was used to detect glycosylated serum protein(GSP) and fasting serum insulin(FINS), and insulin resistance index(HOMA-IR) was calculated. The histopathological changes in the pancreas were observed by HE staining. Tumor necrosis factor(TNF)-α expression in the pancreas was detected using immunohistochemistry. The structural changes in fecal intestinal flora in the K, M, and YGZ groups were detected by 16S rRNA. Western blot was used to detect the expression of farnesoid X receptor(FXR) and takeda G protein-coupled receptor 5(TGR5) in the ileum, cholesterol 7α-hydroxylase(CYP7A1) and sterol 27α-hydroxylase(CYP27A1) in the liver, and G protein-coupled receptors 41(GPR41) and 43(GPR43) in the colon. Compared with the K group, the M group showed increased body weight, blood sugar, serum GSP, fasting blood glucose(FBG), and FINS, increased HOMA-IR, inflammatory infiltration of islet cells, necrosis and degeneration of massive acinar cells, unclear boundary between islet cells and acinar cells, disturbed intestinal flora, and down-regulated FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43. Compared with the M group, the YX, YGG, YGZ, and YGD groups showed decreased body weight, blood sugar, serum GSP, FBG, and FINS, islet cells with intact and clumpy morphology and clear boundary, necrosis of a few acinar cells, and more visible islet cells. The intestinal flora in the YGZ group changed from phylum to genus levels, and the relative abundance of intestinal flora affecting the metabolites of intestinal flora increased. The protein expression of FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43 increased. The results show that Puerariae Lobatae Radix can improve the inflammatory damage of pancreatic islet cells and reduce insulin resistance in db/db mice with T2DM. The mechanism of action may be related to the increase in the abundance of Actinobacteria, Bifidobacterium, and Bacteroides in the intestinal tract and the protein expression related to metabolites of intestinal flora.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Insulin Resistance
		                        			;
		                        		
		                        			Blood Glucose/metabolism*
		                        			;
		                        		
		                        			Diabetes Mellitus, Type 2/genetics*
		                        			;
		                        		
		                        			Pueraria/chemistry*
		                        			;
		                        		
		                        			Gastrointestinal Microbiome
		                        			;
		                        		
		                        			RNA, Ribosomal, 16S
		                        			;
		                        		
		                        			Body Weight
		                        			;
		                        		
		                        			Necrosis
		                        			
		                        		
		                        	
6.Application and Prospect of RNA Profiling Analysis in Forensic Body Fluid Identification.
Shou-Yu WANG ; Rui-Yang TAO ; Yi-Ping HOU ; Cheng-Tao LI
Journal of Forensic Medicine 2022;38(6):763-773
		                        		
		                        			
		                        			In forensic physical evidence identification, the accurate identification of the individual origin and their body fluid composition of the biological samples obtained from the crime scene play a critical role in determining the nature of a crime. In recent years, RNA profiling has become one of the fastest developing methods for body fluids identification. Due to the characteristics of tissue or body fluid specific expression, various types of RNA markers have been proven to be promising candidate markers for body fluids identification in previous studies. This review summarizes the research progress of RNA markers in body fluids identification, including the RNA markers that have been effectively verified in current research and their advantages and disadvantages. Meanwhile, this review prospects the application of RNA markers in forensic medicine.
		                        		
		                        		
		                        		
		                        			Forensic Medicine/methods*
		                        			;
		                        		
		                        			Body Fluids/chemistry*
		                        			;
		                        		
		                        			RNA/analysis*
		                        			;
		                        		
		                        			Feces
		                        			;
		                        		
		                        			Forensic Genetics
		                        			;
		                        		
		                        			Semen/chemistry*
		                        			;
		                        		
		                        			Saliva/chemistry*
		                        			
		                        		
		                        	
7.Advances of long non-coding RNA encoded micro-peptides.
Jianfeng PAN ; Fangzheng SHANG ; Rong MA ; Min WANG ; Youjun RONG ; Lili LIANG ; Shuran NIU ; Yanbo LI ; Yunpeng QI ; Yanjun ZHANG ; Jinquan LI
Chinese Journal of Biotechnology 2022;38(9):3194-3214
		                        		
		                        			
		                        			Long non-coding RNA (lncRNA) refers to non-coding RNA longer than 200 nt, with one or more short open reading frames (sORF), which encode functional micro-peptides. These functional micro-peptides often play key roles in various biological processes, such as Ca2+ transport, mitochondrial metabolism, myocyte fusion, cellular senescence and others. At the same time, these biological processes play a key role in the regulation of body homeostasis, diseases and cancers development and progression, embryonic development and other important physiological processes. Therefore, studying the potential regulatory mechanisms of micro-peptides encoded by lncRNA in organisms will help to further elucidate the potential regulatory processes in organisms. Furthermore, it will provide a new theoretical basis for the subsequent targeted treatment of diseases and improvement of animal growth performance. This review summarizes the latest research progress in the field of lncRNA-encoded micro-peptides, as well as the progress in the fields of muscle physiological regulation, inflammation and immunity, common human cancers, and embryonic development. Finally, the challenges of lncRNA-encoded micro-peptides are briefly described, with the aim to facilitate subsequent in-depth research on micro-peptides.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neoplasms/therapy*
		                        			;
		                        		
		                        			Open Reading Frames
		                        			;
		                        		
		                        			Peptides/chemistry*
		                        			;
		                        		
		                        			RNA, Long Noncoding/genetics*
		                        			
		                        		
		                        	
8.Contributions of flavonoids from citri reticulatae pericarpium to gastric hormones, CD3~+ and TFF3 mRNA expression in rats with spleen deficiency intervened by Liujunzi Decoction.
Shao-Wa LYU ; Ying LI ; Xin YU ; Yu-Yan GUO ; Da-Yu YANG ; Shuang SUN ; Er-Yu SHANG
China Journal of Chinese Materia Medica 2022;47(4):951-958
		                        		
		                        			
		                        			The present study established the spectrum-effect relationship model of flavonoids in Citri Reticulatae Pericarpium(CRP) from 15 batches of Liujunzi Decoction and statistically analyzed the correlation between chemical peaks and efficacy to identify the main effective components. HPLC fingerprints of flavonoids in CRP from 15 batches of Liujunzi Decoction were established. HPLC analysis was carried out on the Venusil XBP C_(18)(L) column(4.6 mm×250 mm, 5 μm) at 30 ℃ with acetonitrile-water(containing 0.1% formic acid) as mobile phase for gradient elution, a flow rate of 1.0 mL·min~(-1), and detection wavelength of 300 nm to obtain chemical fingerprints. Additionally, the effects of flavonoids from CRP in 15 batches of Liujunzi Decoction on the content of GAS, MTL, and VIP, TFF3 mRNA expression, and percentage of CD3~+ T-cells of model rats with spleen deficiency were determined. The spectrum-effect relationship model was established by gray correlation analysis. The results showed that the main characteristic peaks with great contribution to the regulation of gastrointestinal tract were peak 16(vicenin-2), peak 63(sinensetin), peak 64(isosinensetin), peak 65(nobiletin), peak 67(3,5,6,7,8,3',4'-heptemthoxyflavone), peak 68(tangeretin), and peak 69(5-desmethylnobiletin). Therefore, there was a linear correlation between flavonoids from CRP in Liujunzi Decoction and the efficacy, and the medicinal effect was achieved by multi-component action. This study is expected to provide a new idea for exploring the material basis of the effect, i.e., regulating qi prior to replenishing qi, of CRP in Liujunzi Decoction.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Citrus/chemistry*
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			Flavonoids/pharmacology*
		                        			;
		                        		
		                        			Hormones
		                        			;
		                        		
		                        			RNA, Messenger/genetics*
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Spleen
		                        			
		                        		
		                        	
9.Re-detectable positive SARS-CoV-2 RNA tests in patients who recovered from COVID-19 with intestinal infection.
Wanyin TAO ; Xiaofang WANG ; Guorong ZHANG ; Meng GUO ; Huan MA ; Dan ZHAO ; Yong SUN ; Jun HE ; Lianxin LIU ; Kaiguang ZHANG ; Yucai WANG ; Jianping WENG ; Xiaoling MA ; Tengchuan JIN ; Shu ZHU
Protein & Cell 2021;12(3):230-235
10.Screening and evaluation of saline-alkali-tolerant and growth-promoting bacteria.
Xue SUN ; Yonghua DONG ; Na WANG ; Wenhui CUI ; Xianyan LIAO ; Li LIU
Chinese Journal of Biotechnology 2020;36(7):1356-1364
		                        		
		                        			
		                        			Salinity is the most important factor for the growth of crops. It is an effective method to alleviate the toxic effect caused by salt stress using saline-alkali-tolerant and growth-promoting bacteria in agriculture. Seven salt-tolerant bacteria were screened from saline-alkali soil, and the abilities of EPS production, alkalinity reduction and IAA production of the selected strains were investigated. A dominant strain DB01 was evaluated. The abilities of EPS production, alkalinity reduction and IAA production of strain DB01 were 0.21 g/g, 8.7% and 8.97 mg/L, respectively. The isolate was identified as Halomonas aquamarina by partial sequencing analysis of its 16S rRNA genes, and had the ability to inhibit the growth of Fusarium oxysporum f. sp., Alternaria solani, Phytophthora sojae and Rhizoctonia cerealis. It also could promote root length and germination rate of wheat seedlings under salt stress. Halomonas aquamarina can provide theoretical basis for the development of soil microbial resources and the application in saline-alkali soil improvement.
		                        		
		                        		
		                        		
		                        			Alkalies
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Bacteria
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Halomonas
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Plant Roots
		                        			;
		                        		
		                        			microbiology
		                        			;
		                        		
		                        			RNA, Ribosomal, 16S
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Salt Tolerance
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Seedlings
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			microbiology
		                        			;
		                        		
		                        			Soil
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Soil Microbiology
		                        			;
		                        		
		                        			Triticum
		                        			;
		                        		
		                        			microbiology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail