1.RBM46 is essential for gametogenesis and functions in post-transcriptional roles affecting meiotic cohesin subunits.
Yue LV ; Gang LU ; Yuling CAI ; Ruibao SU ; Liang LIANG ; Xin WANG ; Wenyu MU ; Xiuqing HE ; Tao HUANG ; Jinlong MA ; Yueran ZHAO ; Zi-Jiang CHEN ; Yuanchao XUE ; Hongbin LIU ; Wai-Yee CHAN
Protein & Cell 2023;14(1):51-63
RBM46 is a germ cell-specific RNA-binding protein required for gametogenesis, but the targets and molecular functions of RBM46 remain unknown. Here, we demonstrate that RBM46 binds at specific motifs in the 3'UTRs of mRNAs encoding multiple meiotic cohesin subunits and show that RBM46 is required for normal synaptonemal complex formation during meiosis initiation. Using a recently reported, high-resolution technique known as LACE-seq and working with low-input cells, we profiled the targets of RBM46 at single-nucleotide resolution in leptotene and zygotene stage gametes. We found that RBM46 preferentially binds target mRNAs containing GCCUAU/GUUCGA motifs in their 3'UTRs regions. In Rbm46 knockout mice, the RBM46-target cohesin subunits displayed unaltered mRNA levels but had reduced translation, resulting in the failed assembly of axial elements, synapsis disruption, and meiotic arrest. Our study thus provides mechanistic insights into the molecular functions of RBM46 in gametogenesis and illustrates the power of LACE-seq for investigations of RNA-binding protein functions when working with low-abundance input materials.
Animals
;
Mice
;
3' Untranslated Regions/genetics*
;
Cell Cycle Proteins/metabolism*
;
Gametogenesis/genetics*
;
Meiosis/genetics*
;
Nuclear Proteins/genetics*
;
RNA-Binding Proteins/genetics*
2.Role and mechanism of non-coding RNA in the pathogenesis of acute kidney injury.
Peng WANG ; Miao-Miao ZHOU ; Jing NIE
Acta Physiologica Sinica 2022;74(1):39-46
Acute kidney injury (AKI) is a common clinical syndrome and an independent risk factor of chronic kidney disease and end-stage renal failure. At present, the treatments of AKI are still very limited and the morbidity and mortality of AKI are rising. Non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs and circular RNAs (circRNAs), are RNAs that are transcribed from the genome, but not translated into proteins. It has been widely reported that ncRNA is involved in AKI caused by ischemia reperfusion injury (IRI), drugs and sepsis through different molecular biological mechanisms, such as apoptosis and oxidative stress response. Therefore, ncRNAs are expected to become a new target for clinical prevention and treatment of AKI and a new biomarker for early warning of the occurrence and prognosis of AKI. Here, the role and mechanism of ncRNA in AKI and the research progress of ncRNA as biomarkers are reviewed.
Acute Kidney Injury/metabolism*
;
Humans
;
MicroRNAs/metabolism*
;
RNA, Circular
;
RNA, Long Noncoding/genetics*
;
RNA, Untranslated/genetics*
;
Reperfusion Injury/genetics*
3.Advances in epigenetics in ischemic stroke.
Dan-Hong LIU ; Xia-Jun XIONG ; Jun LIAO ; Zhi-Gang MEI ; Jin-Wen GE ; Meng-Zhen WEI
China Journal of Chinese Materia Medica 2022;47(17):4551-4559
Ischemic stroke is one of the main causes of death and long-term disability worldwide, which seriously affects the quality of life of patients and brings a heavy economic burden to families and society. Epidemiological studies have shown that stroke has become the second leading cause of death and major disabling disease in the world, with the characteristics of high morbidity, high recurrence, and high mortality. Epigenetic mechanism is the molecular process where gene expression and function in each cell are dynamically regulated and interconnected and a biological mechanism that changes genetic performance without changing the DNA sequence, including DNA methylation, histone modifications, and non-coding RNA. However, the research on epigenetics is currently focused on other diseases such as tumors. Recent studies have found that epigenetics has received extensive attention in the past few decades as a key factor involved in the pathophysiological process of ischemic stroke. The present study introduced the mediation of epigenetics in the induction of stroke, summarized the potential drug targets for these mechanisms in the treatment of stroke, and further explored the significance of traditional Chinese medicine(TCM) against cerebral ischemia injury based on TCM classification of stroke.
DNA Methylation
;
Epigenesis, Genetic
;
Humans
;
Ischemic Stroke/genetics*
;
Quality of Life
;
RNA, Untranslated/metabolism*
;
Stroke/genetics*
4.The Function of the Vitamin D Receptor and a Possible Role of Enhancer RNA in Epigenomic Regulation of Target Genes: Implications for Bone Metabolism
Shun SAWATSUBASHI ; Koichi NISHIMURA ; Jinichi MORI ; Alexander KOUZMENKO ; Shigeaki KATO
Journal of Bone Metabolism 2019;26(1):3-12
Vitamin D (VD) is essential for bone health, and VD or its analogues are widely used in clinics to ameliorate bone loss. The targets and mode of VD anti-osteoporotic actions appear to be different from those of other classes of drugs modulating bone remodeling. VD exerts its biological activities through the nuclear VD receptor (VDR)-mediated transcriptional regulation of target mRNA and non-coding RNA genes. VD-induced gene regulation involves epigenetic modifications of chromatin conformation at the target loci as well as reconfiguration of higher-order chromosomal organization through VDR-mediated recruitment of various regulatory factors. Enhancer RNAs (eRNA), a class of non-coding enhancer-derived RNAs, have recently emerged as VDR target gene candidates that act through reorganization of chromatin looping to induce enhancer-promoter interaction in activation of mRNA-encoding genes. This review outlines the molecular mechanisms of VD actions mediated by the VDR and suggests novel function of eRNAs in VDR transactivation.
Bone Remodeling
;
Chromatin
;
Epigenomics
;
Metabolism
;
Receptors, Calcitriol
;
RNA
;
RNA, Messenger
;
RNA, Untranslated
;
Transcriptional Activation
;
Vitamin D
;
Vitamins
5.Alternative role of noncoding RNAs: coding and noncoding properties.
Gui-Zhen ZHENG ; Wei LI ; Zhi-Yong LIU
Journal of Zhejiang University. Science. B 2019;20(11):920-927
Noncoding RNAs (ncRNAs) have played a critical role in cellular biological functions. Recently, some peptides or proteins originating from annotated ncRNAs were identified in organism development and various diseases. Here, we briefly review several novel peptides translated by annotated ncRNAs and related key functions. In addition, we summarize the potential mechanism of bifunctional ncRNAs and propose a specific "switch" triggering the transformation from the noncoding to the coding state under certain stimuli or cellular stress. The coding properties of ncRNAs and their peptide products may provide a novel horizon in proteomic research and can be regarded as a potential therapeutic target for the treatment of various diseases.
Animals
;
Calcium/metabolism*
;
Humans
;
Open Reading Frames
;
Protein Biosynthesis
;
RNA, Messenger/genetics*
;
RNA, Untranslated/physiology*
6.SPORTS1.0: A Tool for Annotating and Profiling Non-coding RNAs Optimized for rRNA- and tRNA-derived Small RNAs.
Junchao SHI ; Eun-A KO ; Kenton M SANDERS ; Qi CHEN ; Tong ZHOU
Genomics, Proteomics & Bioinformatics 2018;16(2):144-151
High-throughput RNA-seq has revolutionized the process of small RNA (sRNA) discovery, leading to a rapid expansion of sRNA categories. In addition to the previously well-characterized sRNAs such as microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and small nucleolar RNA (snoRNAs), recent emerging studies have spotlighted on tRNA-derived sRNAs (tsRNAs) and rRNA-derived sRNAs (rsRNAs) as new categories of sRNAs that bear versatile functions. Since existing software and pipelines for sRNA annotation are mostly focused on analyzing miRNAs or piRNAs, here we developed the sRNA annotation pipelineoptimized for rRNA- and tRNA-derived sRNAs (SPORTS1.0). SPORTS1.0 is optimized for analyzing tsRNAs and rsRNAs from sRNA-seq data, in addition to its capacity to annotate canonical sRNAs such as miRNAs and piRNAs. Moreover, SPORTS1.0 can predict potential RNA modification sites based on nucleotide mismatches within sRNAs. SPORTS1.0 is precompiled to annotate sRNAs for a wide range of 68 species across bacteria, yeast, plant, and animal kingdoms, while additional species for analyses could be readily expanded upon end users' input. For demonstration, by analyzing sRNA datasets using SPORTS1.0, we reveal that distinct signatures are present in tsRNAs and rsRNAs from different mouse cell types. We also find that compared to other sRNA species, tsRNAs bear the highest mismatch rate, which is consistent with their highly modified nature. SPORTS1.0 is an open-source software and can be publically accessed at https://github.com/junchaoshi/sports1.0.
Animals
;
Gene Expression Profiling
;
High-Throughput Nucleotide Sequencing
;
Mice
;
MicroRNAs
;
chemistry
;
metabolism
;
Molecular Sequence Annotation
;
RNA, Ribosomal
;
chemistry
;
metabolism
;
RNA, Small Interfering
;
chemistry
;
metabolism
;
RNA, Small Untranslated
;
chemistry
;
metabolism
;
RNA, Transfer
;
chemistry
;
metabolism
;
Sequence Analysis, RNA
;
methods
;
Software
7.Structural Insights into N-methyladenosine (mA) Modification in the Transcriptome.
Genomics, Proteomics & Bioinformatics 2018;16(2):85-98
More than 100 types of chemical modifications in RNA have been well documented. Recently, several modifications, such as N-methyladenosine (mA), have been detected in mRNA, opening the window into the realm of epitranscriptomics. The mA modification is the most abundant modification in mRNA and non-coding RNA (ncRNA). At the molecular level, mA affects almost all aspects of mRNA metabolism, including splicing, translation, and stability, as well as microRNA (miRNA) maturation, playing essential roles in a range of cellular processes. The mA modification is regulated by three classes of proteins generally referred to as the "writer" (adenosine methyltransferase), "eraser" (mA demethylating enzyme), and "reader" (mA-binding protein). The mA modification is reversibly installed and removed by writers and erasers, respectively. Readers, which are members of the YT521-B homology (YTH) family proteins, selectively bind to RNA and affect its fate in an mA-dependent manner. In this review, we summarize the structures of the functional proteins that modulate the mA modification, and provide our insights into the mA-mediated gene regulation.
Adenosine
;
analogs & derivatives
;
metabolism
;
Animals
;
Gene Expression Regulation
;
Humans
;
Methyltransferases
;
chemistry
;
metabolism
;
RNA, Messenger
;
chemistry
;
metabolism
;
RNA, Untranslated
;
chemistry
;
metabolism
;
RNA-Binding Proteins
;
chemistry
;
metabolism
;
Transcriptome
8.MiRNA-203 suppresses tumor cell proliferation, migration and invasion by targeting Slug in gastric cancer.
Liuqing YANG ; Hongwei LIANG ; Yanbo WANG ; Shanting GAO ; Kai YIN ; Zhijian LIU ; Xi ZHENG ; Ying LV ; Lei WANG ; Chen-Yu ZHANG ; Xi CHEN ; Guifang XU ; Weijie ZHANG ; Xiaoping ZOU
Protein & Cell 2016;7(5):383-387
3' Untranslated Regions
;
Animals
;
Antagomirs
;
metabolism
;
Base Sequence
;
Binding Sites
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Humans
;
Mice
;
MicroRNAs
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Messenger
;
metabolism
;
RNA, Small Interfering
;
metabolism
;
Rats
;
Sequence Alignment
;
Snail Family Transcription Factors
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Stomach Neoplasms
;
genetics
;
pathology
9.The roles of ncRNAs and histone-modifiers in regulating breast cancer stem cells.
Zhiju ZHAO ; Shu LI ; Erwei SONG ; Suling LIU
Protein & Cell 2016;7(2):89-99
Cancer stem cells (CSCs), a subpopulation of cancer cells with ability of initiating tumorigenesis, exist in many kinds of tumors including breast cancer. Cancer stem cells contribute to treatment resistance and relapse. Conventional treatments only kill differentiated cancer cells, but spare CSCs. Combining conventional treatments with therapeutic drugs targeting to CSCs will eradicate cancer cells more efficiently. Studying the molecular mechanisms of CSCs regulation is essential for developing new therapeutic strategies. Growing evidences showed CSCs are regulated by non-coding RNA (ncRNA) including microRNAs and long non-coding RNAs (lncRNAs), and histone-modifiers, such as let-7, miR-93, miR-100, HOTAIR, Bmi-1 and EZH2. Herein we review the roles of microRNAs, lncRNAs and histone-modifiers especially Polycomb family proteins in regulating breast cancer stem cells (BCSCs).
Breast Neoplasms
;
genetics
;
metabolism
;
pathology
;
Histones
;
metabolism
;
Humans
;
Neoplastic Stem Cells
;
metabolism
;
RNA, Untranslated
;
genetics
;
metabolism
10.MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6.
Kegan ZHU ; Lei LIU ; Junliang ZHANG ; Yanbo WANG ; Hongwei LIANG ; Gentao FAN ; Zhenhuan JIANG ; Chen-Yu ZHANG ; Xi CHEN ; Guangxin ZHOU
Protein & Cell 2016;7(6):434-444
Osteosarcoma is the most common primary sarcoma of bone, and it is a leading cause of cancer death among adolescents and young adults. However, the molecular mechanism underlying osteosarcoma carcinogenesis remains poorly understood. Recently, cyclin-dependent kinase 6 (CDK6) was identified as an important oncogene. We found that CDK6 protein level, rather than CDK6 mRNA level, is much higher in osteosarcoma tissues than in normal adjacent tissues, which indicates a post-transcriptional mechanism involved in CDK6 regulation in osteosarcoma. MiRNAs are small non-coding RNAs that repress gene expression at the post-transcriptional level and have widely been shown to play important roles in many human cancers. In this study, we investigated the role of miR-29b as a novel regulator of CDK6 using bioinformatics methods. We demonstrated that CDK6 can be downregulated by miR-29b via binding to the 3'-UTR region in osteosarcoma cells. Furthermore, we identified an inverse correlation between miR-29b and CDK6 protein levels in osteosarcoma tissues. Finally, we examined the function of miR-29b-driven repression of CDK6 expression in osteosarcoma cells. The results revealed that miR-29b acts as a tumor suppressor of osteosarcoma by targeting CDK6 in the proliferation and migration processes. Taken together, our results highlight an important role for miR-29b in the regulation of CDK6 in osteosarcoma and may open new avenues for future osteosarcoma therapies.
3' Untranslated Regions
;
Animals
;
Base Sequence
;
Bone Neoplasms
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Cyclin-Dependent Kinase 6
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Humans
;
Mice
;
MicroRNAs
;
metabolism
;
Osteosarcoma
;
metabolism
;
pathology
;
RNA Interference
;
RNA, Messenger
;
metabolism
;
RNA, Small Interfering
;
metabolism
;
Rats
;
Sequence Alignment
;
Up-Regulation

Result Analysis
Print
Save
E-mail