1.Mechanism of Xiangmei Pills in treating ulcerative colitis based on UHPLC-Q-Orbitrap HRMS and 16S rDNA sequencing of intestinal flora.
Ya-Fang HOU ; Rui-Sheng WANG ; Zhen-Ling ZHANG ; Wen-Wen CAO ; Meng ZHAO ; Ya-Hong ZHAO
China Journal of Chinese Materia Medica 2025;50(4):882-895
The efficacy of Xiangmei Pills on rats with ulcerative colitis(UC) was investigated by characterizing the spectrum of the active chemical components of Xiangmei Pills. Rapid identification and classification of the main chemical components were performed,and the therapeutic effects of Xiangmei Pills on the proteins and intestinal flora of UC rats were analyzed to explore the mechanism of its action in treating UC. Fifty SD rats were acclimatized to feeding for 3 d and randomly divided into blank group, model group,mesalazine group(0. 4 g·kg~(-1)), low-dose group of Xiangmei Pills(1. 89 g·kg~(-1)), and high-dose group of Xiangmei Pills(5. 67 g·kg~(-1)), with 10 rats in each group. 5% dextrose sodium sulfate(DSS) was given by gavage to induce the male SD rat model with UC,and the corresponding medicinal solution was given by gavage after 10 days, respectively. The therapeutic effect of Xiangmei Pills on rats with UC was evaluated according to body mass, disease activity index(DAI), and hematoxylin-eosin(HE) staining, and the histopathological changes in the colon were observed. Ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) technique was used to rapidly and accurately identify the main chemical constituents of Xiangmei Pills. Immunohistochemistry was used to detect the expression of aryl hydrocarbon receptor(AhR),interferon-γ(IFN-γ), mucin-2(MUC-2), and cytochrome P450 1A1(CYP1A1) in colon tissue. Interleukin-22(IL-22) expression in colon tissue was detected by immunofluorescence. The 16S r DNA high-throughput sequencing technique was used to study the modulatory effects of Xiangmei Pills on the intestinal flora structure of rats with UC. Pharmacodynamic results showed that compared with that of the blank group, the colon tissue of the model group was congested, and ulcers were visible in the mucosa; compared with that in the model group, the histopathology of the colon of the rats with UC in the groups of Xiangmei Pills were improved, with scattered ulcers and reduced inflammatory cell infiltration. Chemical analysis showed that a total of 45 components were identified by mass spectrometry information, including 15 phenolic acids, 8 coumarins, 15 organic acids, 3 amino acids, 2 flavonoids, and 2 other components. Compared with those in the blank group, the levels of Ah R, CYP1A1, MUC-2, and IL-22 proteins in the colon tissue of rats in the model group were significantly decreased, and the level of IFN-γ protein was significantly increased; the intestinal flora of rats in the model group was disorganized, with a decrease in the abundance of the flora; the relative abundance of Bacteroidetes,unclassified genera of Ascomycetes, Prevotella of the Prevotella family, and Prevotella decreased significantly, and that of Firmicutes decreased, but the difference was not statistically significant. The relative abundance of Bacteroidetes, Bifidobacterium, and Lactobacillus increased significantly. Compared with those of the model group, the levels of Ah R, CYP1A1, MUC-2, and IL-22proteins in the colonic tissue of the groups of Xiangmei Pills were significantly higher, and the levels of IFN-γ proteins were significantly lower. The recovery of the intestinal flora was accelerated, and the diversity of the intestinal flora was significantly increased. The relative abundance of Bacteroidetes was significantly increased, and that of unclassified genera of Ascomycetes,Lactobacillus, Prevotella of the Prevotella family, and Prevotella was significantly increased. The relative abundance of Bacteroidetes and Bifidobacterium was significantly decreased. This study demonstrated that Xiangmei Pills can effectively treat UC, mainly through the phenolic acid and organic acid components to stimulate the intestinal barrier, regulate protein expression and the relative abundance and diversity of intestinal flora, and play a role in the treatment of UC.
Animals
;
Colitis, Ulcerative/metabolism*
;
Drugs, Chinese Herbal/chemistry*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Gastrointestinal Microbiome/genetics*
;
Chromatography, High Pressure Liquid
;
Humans
;
Mass Spectrometry
;
RNA, Ribosomal, 16S/genetics*
;
Bacteria/drug effects*
2.Changes in intestinal flora associated with childhood sleep-disordered breathing and the pathogenesis of non-alcoholic fatty liver disease in children.
Xiaonan YANG ; Hongting HUA ; Dong WANG ; Dongyu SI ; Ruijia GAN ; Dongdong MENG ; Chaobing GAO
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(11):1038-1044
Objective:To explore the interaction between pediatric sleep-disordered breathing(SDB), the intestinal microbiota, and pediatric non-alcoholic fatty liver disease(NAFLD). Methods:A total of 63 non-obese children(47 children with SDB in the experimental group and 16 without SDB in the control group) were enrolled in this study. The liver function and degree of SDB were assessed in both groups. High-throughput 16S rRNA sequencing was conducted to detect the composition and functional variations of the intestinal microbiota in the two groups of children. Results:Compared with children in the experimental group, serum ALT and AST levels were higher in the control group. and the relative proteobacteria abundance of intestinal flora increased, and the relative abundance of Bacteroidetes decreased significantly. Function including membrane transport, carbohydrate metabolism and lipid metabolism, were enriched in the intestinal microbiota of children with SDB. Conclusion:The composition and functional annotation of the pediatric liver functional status and gut microbiota were significantly different between the two groups of children with and without SDB. Changes in SDB-associated intestinal bacterial abundance may be related to the pathogenesis of pediatric NAFLD.
Humans
;
Non-alcoholic Fatty Liver Disease/microbiology*
;
Gastrointestinal Microbiome
;
Child
;
Male
;
Sleep Apnea Syndromes/microbiology*
;
Female
;
RNA, Ribosomal, 16S/genetics*
;
Bacteroidetes
;
Proteobacteria/isolation & purification*
;
Lipid Metabolism
3.Screening and identification of a polyurethane-degrading bacterium G-11 and its plastic degradation characteristics.
Zhitong JIANG ; Xue CHEN ; Jinhui LEI ; Huizhen XUE ; Bo ZHANG ; Xiaofan XU ; Huijing GENG ; Zhoukun LI ; Xin YAN ; Weiliang DONG ; Hui CAO ; Zhongli CUI
Chinese Journal of Biotechnology 2023;39(5):1963-1975
Polyurethane (PUR) plastics is widely used because of its unique physical and chemical properties. However, unreasonable disposal of the vast amount of used PUR plastics has caused serious environmental pollution. The efficient degradation and utilization of used PUR plastics by means of microorganisms has become one of the current research hotspots, and efficient PUR degrading microbes are the key to the biological treatment of PUR plastics. In this study, an Impranil DLN-degrading bacteria G-11 was isolated from used PUR plastic samples collected from landfill, and its PUR-degrading characteristics were studied. Strain G-11 was identified as Amycolatopsis sp. through 16S rRNA gene sequence alignment. PUR degradation experiment showed that the weight loss rate of the commercial PUR plastics upon treatment of strain G-11 was 4.67%. Scanning electron microscope (SEM) showed that the surface structure of G-11-treated PUR plastics was destroyed with an eroded morphology. Contact angle and thermogravimetry analysis (TGA) showed that the hydrophilicity of PUR plastics increased along with decreased thermal stability upon treatment by strain G-11, which were consistent with the weight loss and morphological observation. These results indicated that strain G-11 isolated from landfill has potential application in biodegradation of waste PUR plastics.
Plastics/metabolism*
;
Polyurethanes/chemistry*
;
RNA, Ribosomal, 16S
;
Bacteria/genetics*
;
Biodegradation, Environmental
4.Effects of total ginsenosides from Panax ginseng stems and leaves on gut microbiota and short-chain fatty acids metabolism in acute lung injury mice.
Qi DING ; Si-Wen FENG ; Gong-Hao XU ; Ye-Yang CHEN ; Yuan-Yuan SHI
China Journal of Chinese Materia Medica 2023;48(5):1319-1329
This study aimed to investigate the biological effects and underlying mechanisms of the total ginsenosides from Panax ginseng stems and leaves on lipopolysaccharide(LPS)-induced acute lung injury(ALI) in mice. Sixty male C57BL/6J mice were randomly divided into a control group, a model group, the total ginsenosides from P. ginseng stems and leaves normal administration group(61.65 mg·kg~(-1)), and low-, medium-, and high-dose total ginsenosides from P. ginseng stems and leaves groups(15.412 5, 30.825, and 61.65 mg·kg~(-1)). Mice were administered for seven continuous days before modeling. Twenty-four hours after modeling, mice were sacrificed to obtain lung tissues and calculate lung wet/dry ratio. The number of inflammatory cells in bronchoalveolar lavage fluid(BALF) was detected. The levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in BALF were detected. The mRNA expression levels of IL-1β, IL-6, and TNF-α, and the levels of myeloperoxidase(MPO), glutathione peroxidase(GSH-Px), superoxide dismutase(SOD), and malondialdehyde(MDA) in lung tissues were determined. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in lung tissues. The gut microbiota was detected by 16S rRNA sequencing, and gas chromatography-mass spectrometry(GC-MS) was applied to detect the content of short-chain fatty acids(SCFAs) in se-rum. The results showed that the total ginsenosides from P. ginseng stems and leaves could reduce lung index, lung wet/dry ratio, and lung damage in LPS-induced ALI mice, decrease the number of inflammatory cells and levels of inflammatory factors in BALF, inhibit the mRNA expression levels of inflammatory factors and levels of MPO and MDA in lung tissues, and potentiate the activity of GSH-Px and SOD in lung tissues. Furthermore, they could also reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Lachnospiraceae and Muribaculaceae, decrease the relative abundance of Prevotellaceae, and enhance the content of SCFAs(acetic acid, propionic acid, and butyric acid) in serum. This study suggested that the total ginsenosides from P. ginseng stems and leaves could improve lung edema, inflammatory response, and oxidative stress in ALI mice by regulating gut microbiota and SCFAs metabolism.
Mice
;
Male
;
Animals
;
Ginsenosides/pharmacology*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6
;
Panax/genetics*
;
Lipopolysaccharides/adverse effects*
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Mice, Inbred C57BL
;
Acute Lung Injury/genetics*
;
Lung/metabolism*
;
Superoxide Dismutase/metabolism*
;
Plant Leaves/metabolism*
;
RNA, Messenger
5.Effect of moxibustion at "Mingmen" (GV 4) and "Guanyuan" (CV 4) on immune function in healthy rats based on intestinal flora.
Jun-Hua ZHANG ; Si SHAN ; Mu-Chen WANG ; Ze-Han ZOU ; Hong-Ning LIU
Chinese Acupuncture & Moxibustion 2023;43(10):1157-1164
OBJECTIVE:
To observe the effects of moxibustion at "Mingmen" (GV 4) and "Guanyuan" (CV 4) on immune function and intestinal flora in healthy rats, thereby investigating the underlying mechanism of moxibustion on immune function.
METHODS:
Twenty 8-week-old SD rats were randomly divided into a young blank group and a young moxibustion group, with 10 rats in each group. Similarly, twenty 8-month-old SD rats were randomly divided into a middle-aged blank group and a middle-aged moxibustion group, with 10 rats in each group. The rats in the two moxibustion groups received moxibustion at "Mingmen" (GV 4) and "Guanyuan" (CV 4), 15 min per session, once daily, five times a week, for a total of four months. The rats in the two blank groups were fed under normal conditions. After the intervention, thymus and spleen indexes were calculated; the morphology of thymus and spleen tissues was observed using HE staining; the flow cytometry was used to detect the expression of CD and CD T lymphocytes and the CD/CD ratio was calculated; ELISA was used to measure the serum levels of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-17 (IL-17); 16S rRNA high-throughput sequencing was used to analyze the intestinal flora. Additionally, the correlation between the relative abundance of intestinal flora and serum levels of TNF-α, IFN-γ, IL-6, IL-10 and IL-17 was analyzed.
RESULTS:
Compared with the young blank group, the young moxibustion group exhibited an increase in the cortical area of thymus tissue with tighter lymphocyte arrangement; compared with the middle-aged blank group, the middle-aged moxibustion group showed an increase in thymus index (P<0.05) and an increase in the cortical area of thymus tissue. There were no significant differences in spleen index between the 2 moxibustion groups and the 2 blank groups (P>0.05). There were no significant differences in the expression of CD, CD, and CD/CD ratio between the 2 moxibustion groups and the corresponding blank groups (P>0.05). Compared with the young blank group, the young moxibustion group had elevated IL-6 level (P<0.05); compared with the middle-aged blank group, the middle-aged moxibustion group had decreased IL-10 and IL-17 levels (P<0.05). Compared with the young blank group, the young moxibustion group exhibited increased Sobs index, Ace index, and Chao index (P<0.01, P<0.05), as well as increased relative abundance of Spirochaetota, Treponema, Turicibacter, Rikenellaceae_RC9_gut_group (P<0.05), and decreased relative abundance of Dubosiella (P<0.05). Compared with the middle-aged blank group, the middle-aged moxibustion group had increased relative abundance of Spirochaetota, Treponema, norank_f_Peptococcaceae (P<0.05), and decreased relative abundance of Proteobacteria, Allobaculum, and Faecalibaculum (P<0.05). Correlation analysis revealed that relative abundance of Eubacterium_xylanophilum_group and unclassified _f_Lachnospiraceae was negatively correlated with serum TNF-α level (r=-0.39, P=0.03; r=-0.24, P=0.04), while relative abundance of norank_f_norank_o_Clostridia_UCG-014 and Lactobacillus was positively correlated with serum TNF-α level (r=0.37, P=0.04; r=0.43, P=0.02). The relative abundance of Roseburia and Monoglobus was negatively correlated with serum IFN-γ level (r=-0.40, P=0.02; r=-0.44, P=0.01), while relative abundance of Lactobacillus was positively correlated with serum IL-10 level (r=0.43, P=0.02).
CONCLUSION
Moxibustion could improve immune function in healthy rats, and its mechanism may be related to the regulation of relative abundance of intestinal flora.
Rats
;
Animals
;
Moxibustion
;
Rats, Sprague-Dawley
;
Interleukin-10/genetics*
;
Interleukin-17
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/genetics*
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Interferon-gamma
;
Immunity
6.Effect and mechanism of Puerariae Lobatae Radix in alleviating insulin resistance in T2DM db/db mice based on intestinal flora.
Hong-Yang ZHU ; Ye LIU ; Jia-Rong LI ; Yu-Hui LIU ; Zi-Ling RONG ; Yu-Ting LI ; Shi-Yao CHANG
China Journal of Chinese Materia Medica 2023;48(17):4693-4701
This study aimed to examine the effect and underlying mechanism of Puerariae Lobatae Radix on insulin resistance in db/db mice with type 2 diabetes mellitus(T2DM) based on the analysis of intestinal flora. Fifty db/db mice were randomly divided into a model group(M group), a metformin group(YX group), a high-dose Puerariae Lobatae Radix group(YGG group), a medium-dose Puerariae Lobatae Radix group(YGZ group), and a low-dose Puerariae Lobatae Radix group(YGD group). Another 10 db/m mice were assigned to the normal group(K group). After continuous administration for eight weeks, body weight and blood sugar of mice were measured. Enzyme linked immunosorbent assay(ELISA) was used to detect glycosylated serum protein(GSP) and fasting serum insulin(FINS), and insulin resistance index(HOMA-IR) was calculated. The histopathological changes in the pancreas were observed by HE staining. Tumor necrosis factor(TNF)-α expression in the pancreas was detected using immunohistochemistry. The structural changes in fecal intestinal flora in the K, M, and YGZ groups were detected by 16S rRNA. Western blot was used to detect the expression of farnesoid X receptor(FXR) and takeda G protein-coupled receptor 5(TGR5) in the ileum, cholesterol 7α-hydroxylase(CYP7A1) and sterol 27α-hydroxylase(CYP27A1) in the liver, and G protein-coupled receptors 41(GPR41) and 43(GPR43) in the colon. Compared with the K group, the M group showed increased body weight, blood sugar, serum GSP, fasting blood glucose(FBG), and FINS, increased HOMA-IR, inflammatory infiltration of islet cells, necrosis and degeneration of massive acinar cells, unclear boundary between islet cells and acinar cells, disturbed intestinal flora, and down-regulated FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43. Compared with the M group, the YX, YGG, YGZ, and YGD groups showed decreased body weight, blood sugar, serum GSP, FBG, and FINS, islet cells with intact and clumpy morphology and clear boundary, necrosis of a few acinar cells, and more visible islet cells. The intestinal flora in the YGZ group changed from phylum to genus levels, and the relative abundance of intestinal flora affecting the metabolites of intestinal flora increased. The protein expression of FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43 increased. The results show that Puerariae Lobatae Radix can improve the inflammatory damage of pancreatic islet cells and reduce insulin resistance in db/db mice with T2DM. The mechanism of action may be related to the increase in the abundance of Actinobacteria, Bifidobacterium, and Bacteroides in the intestinal tract and the protein expression related to metabolites of intestinal flora.
Mice
;
Animals
;
Insulin Resistance
;
Blood Glucose/metabolism*
;
Diabetes Mellitus, Type 2/genetics*
;
Pueraria/chemistry*
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Body Weight
;
Necrosis
7.Screening, domestication and identification of intestinal uric acid degrading bacteria in low uric acid population.
Tingting TIAN ; Wujin CHEN ; Meiting LIANG ; MAYINA KAHAER ; Rui LI ; Yuping SUN
Journal of Biomedical Engineering 2022;39(4):792-797
As the largest ecosystem of human body, intestinal microorganisms participate in the synthesis and metabolism of uric acid. Developing and utilizing intestinal bacteria to degrade uric acid might provide new ideas for the treatment of hyperuricemia. The fecal samples of people with low uric acid were inoculated into uric acid selective medium with the concentration of 1.5 mmol/L for preliminary screening, and the initially screened strains that may have degradation ability were domesticated by concentration gradient method, and the strains with high uric acid degradation rate were identified by 16S rRNA sequencing method. A strain of high-efficiency uric acid degrading bacteria was screened and domesticated from the feces of people with low uric acid. The degradation rate of uric acid could reach 50.2%. It was identified as Escherichia coli. The isolation and domestication of high efficient uric acid degrading strains can not only provide scientific basis for the study of the mechanism of intestinal microbial degradation of uric acid, but also reserve biological strains for the treatment of hyperuricemia and gout in the future.
Bacteria/metabolism*
;
Domestication
;
Ecosystem
;
Escherichia coli/genetics*
;
Humans
;
Hyperuricemia
;
RNA, Ribosomal, 16S/metabolism*
;
Uric Acid/metabolism*
8.Screening and evaluation of saline-alkali-tolerant and growth-promoting bacteria.
Xue SUN ; Yonghua DONG ; Na WANG ; Wenhui CUI ; Xianyan LIAO ; Li LIU
Chinese Journal of Biotechnology 2020;36(7):1356-1364
Salinity is the most important factor for the growth of crops. It is an effective method to alleviate the toxic effect caused by salt stress using saline-alkali-tolerant and growth-promoting bacteria in agriculture. Seven salt-tolerant bacteria were screened from saline-alkali soil, and the abilities of EPS production, alkalinity reduction and IAA production of the selected strains were investigated. A dominant strain DB01 was evaluated. The abilities of EPS production, alkalinity reduction and IAA production of strain DB01 were 0.21 g/g, 8.7% and 8.97 mg/L, respectively. The isolate was identified as Halomonas aquamarina by partial sequencing analysis of its 16S rRNA genes, and had the ability to inhibit the growth of Fusarium oxysporum f. sp., Alternaria solani, Phytophthora sojae and Rhizoctonia cerealis. It also could promote root length and germination rate of wheat seedlings under salt stress. Halomonas aquamarina can provide theoretical basis for the development of soil microbial resources and the application in saline-alkali soil improvement.
Alkalies
;
metabolism
;
Bacteria
;
drug effects
;
genetics
;
Halomonas
;
genetics
;
Plant Roots
;
microbiology
;
RNA, Ribosomal, 16S
;
genetics
;
Salt Tolerance
;
genetics
;
Seedlings
;
growth & development
;
microbiology
;
Soil
;
chemistry
;
Soil Microbiology
;
Triticum
;
microbiology
9.Change of bacterial community structure during cellulose degradation by the microbial consortium.
Shiqi AI ; Yiquan ZHAO ; Zhiyuan SUN ; Yamei GAO ; Lei YAN ; Hongzhi TANG ; Weidong WANG
Chinese Journal of Biotechnology 2018;34(11):1794-1808
In order to clarify dynamic change of microbial community composition and to identify key functional bacteria in the cellulose degradation consortium, we studied several aspects of the biodegradation of filter papers and rice straws by the microbial consortium, the change of substrate degradation, microbial biomass and pH of fermentation broth. We extracted total DNA of the microbial consortium in different degradation stages for high-throughput sequencing of amplicons of bacterial 16 S rRNA genes. Based on the decomposition characteristics test, we defined the 12th, 72nd and 168th hours after inoculation as the initial stage, peak stage and end stage of degradation, respectively. The microbial consortium was mainly composed of 1 phylum, 2 classes, 2 orders, 7 families and 11 genera. With cellulose degradation, bacteria in the consortium showed different growth trends. The relative abundance of Brevibacillus and Caloramator decreased gradually. The relative abundance of Clostridium, Bacillus, Geobacillus and Cohnella increased gradually. The relative abundance of Ureibacillus, Tissierella, Epulopiscium was the highest in peak stage. The relative abundance of Paenibacillus and Ruminococcus did not change obviously in each stage. Above-mentioned 11 main genera all belonged to Firmicutes, which are thermophilic, broad pH adaptable and cellulose or hemicellulose degradable. During cellulose degradation by the microbial consortium, aerobic bacteria were dominant functional bacteria in the initial stage. However, the relative abundance of anaerobic bacteria increased gradually in middle and end stage, and replaced aerobic bacteria to become main bacteria to degrade cellulose.
Bacteria
;
classification
;
metabolism
;
Biodegradation, Environmental
;
Cellulose
;
metabolism
;
DNA, Bacterial
;
genetics
;
Microbial Consortia
;
RNA, Ribosomal, 16S
;
genetics
10.First Case Report of Bacteremia Due to Catabacter hongkongensis in a Korean Patient.
Yong Jun CHOI ; Eun Jeong WON ; Soo Hyun KIM ; Myung Geun SHIN ; Jong Hee SHIN ; Soon Pal SUH
Annals of Laboratory Medicine 2017;37(1):84-87
No abstract available.
Aged
;
Anti-Bacterial Agents/pharmacology/therapeutic use
;
Cefotaxime/analogs & derivatives/therapeutic use
;
Cholangiopancreatography, Endoscopic Retrograde
;
Gallstones/surgery
;
Gram-Negative Anaerobic Bacteria/drug effects/genetics/*isolation & purification
;
Gram-Negative Bacterial Infections/*diagnosis/drug therapy/microbiology
;
Humans
;
Male
;
Metronidazole/therapeutic use
;
Microbial Sensitivity Tests
;
RNA, Ribosomal, 16S/chemistry/genetics/metabolism
;
Sequence Analysis, DNA
;
Tomography, X-Ray Computed

Result Analysis
Print
Save
E-mail