1.Teriparatide regulates osteoblast differentiation in high-glucose microenvironment through the cAMP/PKA/CREB signaling pathway.
Tian HOU ; Ya Zhi QIN ; Yan ZHANG ; Guo Chen WEN ; Meng Chun QI ; Wei DONG
Journal of Southern Medical University 2023;43(1):39-45
OBJECTIVE:
To investigate the effect of teriparatide on the differentiation of MC3T3-E1 cells in high-glucose microenvironment and explore the possible mechanism.
METHODS:
MC3T3-E1 cells cultured in normal glucose or high-glucose (25 mmol/L) medium were treated with 10 nmol/L teriparatide with or without co-treatment with H-89 (a PKA inhibitor). CCK-8 assay was used to detect the changes in cell proliferation, and cAMP content in the cells was determined with ELISA. Alkaline phosphatase (ALP) activity and mineralized nodules in the cells were detected using ALP kit and Alizarin red staining, respectively. The changes in cell morphology were detected by cytoskeleton staining. Real-time PCR was used to detect the mRNA expressions of PKA, CREB, RUNX2 and Osx in the treated cells.
RESULTS:
The treatments did not result in significant changes in proliferation of MC3T3-E1 cells (P > 0.05). Compared with the cells in routine culture, the cells treated with teriparatide showed significantly increased cAMP levels (P < 0.05) with enhanced ALP activity and increased area of mineralized nodules (P < 0.05). Teriparatide treatment also resulted in more distinct visualization of the cytoskeleton in the cells and obviously up-regulated the mRNA expressions of PKA, CREB, RUNX2 and Osx (P < 0.05). The opposite changes were observed in cells cultured in high glucose. In cells exposed to high glucose, treatment with teriparatide significantly increased cAMP levels (P < 0.05), ALP activity and the area of mineralized nodules (P < 0.05) and enhanced the clarity of the cytoskeleton and mRNA expressions of PKA, CREB, RUNX2 and Osx; the effects of teriparatide was strongly antagonized by co-treatment with H-89 (P < 0.05).
CONCLUSION
Teriparatide can promote osteoblast differentiation of MC3T3-E1 cells in high-glucose microenvironment possibly by activating the cAMP/PKA/CREB signaling pathway.
Cell Differentiation
;
Core Binding Factor Alpha 1 Subunit
;
Glucose/pharmacology*
;
Osteoblasts/drug effects*
;
RNA, Messenger
;
Signal Transduction
;
Teriparatide
;
Animals
;
Mice
;
Cell Line
2.Panax notoginseng saponins improve monocrotaline-induced pulmonary arterial hypertension in rats by inhibiting ADAM10/Notch3 signaling pathway.
Sai ZHANG ; Yun-Na TIAN ; Zheng-Yang SONG ; Xiao-Ting WANG ; Xin-Yu WANG ; Jun-Peng XU ; Lin-Bo YUAN ; Wan-Tie WANG
Acta Physiologica Sinica 2023;75(4):503-511
In this study, we investigated the effects of Panax notoginseng saponins (PNS) on pulmonary vascular remodeling and ADAM10/Notch3 pathway in pulmonary arterial hypertension (PAH). PAH rat model was established, and male Sprague Dawley (SD) rats were randomly divided into control group, monocrotaline (MCT) group and MCT+PNS group, with 10 rats in each group. Rats in the control group were intraperitoneally injected with equal volume of normal saline. Rats in the MCT group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with the same volume of normal saline every day. Rats in the MCT+PNS group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with 50 mg/kg PNS every day. The modeling time of each group lasted for 21 days. After the model was established, the mean pulmonary artery pressure (mPAP) was measured by right heart catheterization technique, the right ventricular hypertrophy index (RVHI) was calculated, the microscopic morphology and changes of pulmonary vascular wall were observed by HE and Masson staining, and the expressions of ADAM10, Notch3, Hes-1, P27, PCNA, Caspase-3 proteins and mRNA in pulmonary vascular tissue of rats were detected by Western blot and qPCR. The expression and localization of Notch3 and α-SMA were detected by immunofluorescence staining. The protein expression of ADAM10 was detected by immunohistochemical staining. The results showed that compared with the control group, mPAP, RVHI, pulmonary vessels and collagen fibers in the MCT group were significantly increased, the expressions of ADAM10, Notch3, Hes-1, and PCNA protein and mRNA were significantly increased, while the expressions of P27 and Caspase-3 protein and mRNA were decreased significantly. Compared with the MCT group, mPAP and RVHI were significantly decreased, pulmonary vessels were significantly improved and collagen fibers were significantly reduced, the expressions of protein and mRNA of ADAM10, Notch3, Hes-1, and PCNA were decreased in MCT+PNS group, but the expressions of protein and mRNA of P27 and Caspase-3 were increased slightly. The results of immunofluorescence showed that Notch3 and α-SMA staining could overlap, which proved that Notch3 was expressed in smooth muscle cells. The expression of Notch3 in the MCT group was increased significantly compared with that in the control group, while PNS intervention decreased the expression of Notch3. Immunohistochemical staining showed that compared with the control group, the amount of ADAM10 in the MCT group was increased significantly, and the expression of ADAM10 in the MCT+PNS group was decreased compared with the MCT group. These results indicate that PNS can improve the PAH induced by MCT in rats by inhibiting ADAM10/Notch3 signaling pathway.
Animals
;
Male
;
Rats
;
Caspase 3/metabolism*
;
Collagen
;
Disease Models, Animal
;
Hypertension, Pulmonary/drug therapy*
;
Monocrotaline/adverse effects*
;
Panax notoginseng/chemistry*
;
Proliferating Cell Nuclear Antigen/pharmacology*
;
Pulmonary Arterial Hypertension
;
Pulmonary Artery/metabolism*
;
Rats, Sprague-Dawley
;
Receptor, Notch3/genetics*
;
RNA, Messenger
;
Saline Solution
;
Signal Transduction
;
Saponins/pharmacology*
3.Yifei Jianpi recipe improves cigarette smoke-induced inflammatory injury and mucus hypersecretion in human bronchial epithelial cells by inhibiting the TLR4/NF-κB signaling pathway.
Chen XU ; Chunying LI ; Sheng WANG
Journal of Southern Medical University 2023;43(4):507-515
OBJECTIVE:
To explore the mechanism of Yifei Jianpi recipe for improving cigarette smoke- induced inflammatory injury and mucus hypersecretion in cultured human bronchial epithelial cells.
METHODS:
Serum samples were collected from 40 SD rats treated with Yifei Jianpi recipe (n=20) or normal saline (n=20) by gavage. Cultured human bronchial epithelial 16HBE cells were stimulated with an aqueous cigarette smoke extract (CSE), followed by treatment with the collected serum at different dilutions. The optimal concentration and treatment time of CSE and the medicated serum for cell treatment were determined with CCK-8 assay. The expressions of TLR4, NF-κB, MUC5AC, MUC7, and muc8 at both the mRNA and protein levels in the treated cells were examined with RT- qPCR and Western blotting, and the effects of TLR4 gene silencing and overexpression on their expressions were assessed. The expressions of TNF-α, IL-1 β, IL-6 and IL-8 in the cells were detected using ELISA.
RESULTS:
At the optimal concentration of 20%, treatment with the medicated serum for 24 h significantly lowered the mRNA and protein expressions of TLR4, NF- κB, MUC5AC, MUC7, and MUC8 in CSE- exposed 16HBE cells, and these effects were further enhanced by TLR4 silencing in the cells. In 16HBE cells with TLR4 overexpression, the expressions of TLR4, NF-κB, MUC5AC, MUC7, and MUC8 were significantly increased after CSE exposure and were lowered following treatment with the medicated serum (P < 0.05). The medicated serum also significantly lowered the levels of TNF-α, IL-1β, IL-6 and IL-8 in CSE-exposed 16HBE cells (P < 0.05).
CONCLUSIONS
In the 16HBE cell model of chronic obstructive pulmonary disease (COPD), treatment with Yifei Jianpi recipe-medicated serum improves inflammation and mucus hypersecretion possibly by reducing MUC secretion and inhibiting the TLR4/NF-κB signaling pathway.
Humans
;
Rats
;
Animals
;
NF-kappa B/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Interleukin-8/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Cigarette Smoking/adverse effects*
;
Interleukin-6/metabolism*
;
Rats, Sprague-Dawley
;
Pulmonary Disease, Chronic Obstructive/drug therapy*
;
Signal Transduction
;
Epithelial Cells/metabolism*
;
Mucus/metabolism*
;
RNA, Messenger/metabolism*
4.Regulatory Mechanism of Mangiferin Combined with Bortezomib on Malignant Biological Behavior of Burkitt Lymphoma and Its Effect on Expression of CXC Chemokine Receptors.
Zhi-Min YAN ; Yan-Quan LIU ; Qing-Lin XU ; Jie LIN ; Xin LIU ; Qiu-Ping ZHU ; Xin-Ji CHEN ; Ting-Bo LIU ; Xiao-Lan LIAN
Journal of Experimental Hematology 2023;31(5):1394-1402
OBJECTIVE:
To analyze the effects of mangiferin combined with bortezomib on the proliferation, invasion, apoptosis and autophagy of human Burkitt lymphoma Raji cells, as well as the expression of CXC chemokine receptors (CXCRs) family, and explore the molecular mechanism between them to provide scientific basis for basic research and clinical work of Burkitt lymphoma.
METHODS:
Raji cells were intervened with different concentrations of mangiferin and bortezomib alone or in combination, then cell proliferation was detected by CCK-8 assay, cell invasion ability was detected by Transwell chamber method, cell apoptosis was detected by Annexin V/PI double-staining flow cytometry, apoptosis, autophagy and Akt/mTOR pathway protein expression were detected by Western blot, and the expression changes of CXCR family was detected by real-time quantitative PCR (RT-qPCR).
RESULTS:
Different concentrations of mangiferin intervened Raji cells for different time could inhibit cell viability in a concentration- and time-dependent manner (r =-0.682, r =-0.836). When Raji cells were intervened by combination of mangiferin and bortezomib, compared with single drug group, the proliferation and invasion abilities were significantly decreased, while the apoptosis level was significantly increased (P <0.01). Mangiferin combined with bortezomib could significantly up-regulate the expression of pro-apoptotic protein Bax and down-regulate the expression of anti-apoptotic protein Bcl-2 after intervention in Raji cells. Caspase-3 was also hydrolyzed and activated, and then induced the apoptosis of Raji cells. Mangiferin combined with bortezomib could up-regulate the expression of LC3Ⅱ protein in Raji cells, and the ratio of LC3Ⅱ/LC3Ⅰ in cells was significantly up-regulated compared with single drug or control group (P <0.01). Mangiferin combined with bortezomib could significantly inhibit the phosphorylation levels of Akt and mTOR, inhibit the proliferation and invasion of Raji cells by inhibiting Akt/mTOR pathway, and induce cell autophagy and apoptosis. Mangiferin and bortezomib could down-regulate the expressions of CXCR4 and CXCR7 mRNA after single-agent intervention in Raji cells, and the down-regulations of CXCR4 and CXCR7 mRNA expression were more significant when the two drugs were combined (P <0.01). Mangiferin alone or combined with bortezomib had no significant effect on CXCR5 mRNA expression in Raji cells (P >0.05), while the combination of the two drugs could down-regulate the expression of CXCR3 (P <0.05).
CONCLUSION
Mangiferin combined with bortezomib can synergistically inhibit the proliferation and invasion of Raji cells, and induce autophagy and apoptosis. The mechanism may be related to the inhibition of Akt/mTOR signaling pathway, down-regulation of anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax, and the inhibition of the expression of CXCR family.
Humans
;
Antineoplastic Agents/therapeutic use*
;
Apoptosis/drug effects*
;
Apoptosis Regulatory Proteins/immunology*
;
Autophagy/immunology*
;
bcl-2-Associated X Protein/immunology*
;
Bortezomib/therapeutic use*
;
Burkitt Lymphoma/immunology*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Drug Therapy, Combination
;
Proto-Oncogene Proteins c-akt
;
Proto-Oncogene Proteins c-bcl-2
;
Receptors, CXCR/immunology*
;
RNA, Messenger
;
TOR Serine-Threonine Kinases
;
Xanthones/therapeutic use*
5.Role of DNMT3a in Hydroquinone-Induced Hematopoietic Stem Cell Toxicity.
Kun WU ; Bo NIE ; Jin-Rong YANG ; Zheng-Xin HE ; Shen-Ju CHENG ; Yan-Hong LI ; Zhen JIN ; Ming-Xia SHI
Journal of Experimental Hematology 2022;30(2):607-612
OBJECTIVE:
To investigate the regulatory effect and mechanism of DNA methyltransferase 3A (DNMT3a) in hydroquinone-induced hematopoietic stem cell toxicity.
METHODS:
Cells (HSPC-1) were divided into 4 groups, that is A: normal HSPC-1; B: HQ-intervented HSPC-1; C: group B + pcDNA3 empty vector; D: group B + pcDNA3- DNMT3a. RT-qPCR and Western blot were used to detect the expression levels of DNMT3a and PARP-1 mRNA and protein, respectively. Cell morphology was observe; Cell viability and apoptosis rate of HSPC-1 were detected by MTT and flow cytometry, respectively.
RESULTS:
Compared with group A, the expression levels of DNMT3a mRNA and protein in HSPC-1 of group B were decreased, while PARP-1 mRNA and protein were increased (P<0.05); there was no significant difference in the above indexes between group C and group B; compared with group B, the expression levels of DNMT3a mRNA and protein showed increased, while PARP-1 mRNA and protein were decreased significantly in cells of group D transfected with DNMT3a (P<0.05). Cells in each group were transfected with DNMT3a and cultured for 24 h, HSPC-1 in group A showed high density growth and mononuclear fusion growth, while the number of HSPC-1 in group B and C decreased and grew slowly. Compared with group B and C, the cell growth rate of group D was accelerated. The MTT analysis showed that cell viability of HSPC-1 in group B were lower than that of group A at 24 h, 48 h and 72 h (P<0.05); after transfected with DNMT3a, the cell viability of HSPC-1 in group D were higher than that of group B at 24 h, 48 h and 72 h (P<0.05). The apoptosis rate of cells in group B was significantly higher than that of group A (P<0.001), while the apoptosis rate in group D was lower than that of group B (P<0.001).
CONCLUSION
DNMT3a may be involved in the damage of hematopoietic stem cells induced by hydroquinone, which may be related to the regulation of PARP-1 activity by hydroquinone-inhibited DNMT3a.
Apoptosis
;
Cell Proliferation
;
DNA Methyltransferase 3A
;
Hematopoietic Stem Cells/drug effects*
;
Humans
;
Hydroquinones/toxicity*
;
Poly (ADP-Ribose) Polymerase-1
;
RNA, Messenger/metabolism*
6.Regulation of microRNA-126 on the polarization of human macrophages stimulated by Porphyromonas gingivalis lipopolysaccharide.
Jia Jun LI ; Yue LIU ; Li Ting SONG ; Chang Yi LI ; Shao Yun JIANG
Chinese Journal of Stomatology 2022;57(4):390-396
Objective: To study the effect of microRNA-126 (miR-126) on the polarization of human monocyte-derived macrophages stimulated by Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS). Methods: Macrophages derived from human myeloid leukemia mononuclear cells were stimulated by Pg-LPS (5 mg/L) and by Pg-LPS (5 mg/L) after 24 h-transfection of miR-126 mimic or negative control RNA for 48 h, respectively. Real-time quantitative-PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and Western blotting were conducted to detect the changes in miR-126, pro-inflammatory factor tumor necrosis factor-α (TNF-α), anti-inflammatory factors interleukin-10 (IL-10), inducible nitric oxide synthase (iNOS), arginase-1 (Arg-1) and M1 polarization-related pathways such as nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Results: Compared with non-LPS stimulation group (TNF-α: 1.000±0.020, iNOS: 1.125±0.064, miR-126: 1.004±0.113, IL-10: 1.003±0.053, Arg-1: 1.130±0.061), the mRNA levels of TNF-α (3.105±0.278) and iNOS (4.296±0.003) increased significantly (t=6.53, P=0.003; t=42.63, P<0.001, respectively), while miR-126, IL-10 and Arg-1 expressions (0.451±0.038, 0.545±0.004 and 0.253±0.017) decreased significantly (t=7.95, P=0.001; t=7.36, P=0.002; t=11.94, P<0.001, respectively) after Pg-LPS stimulated by human-derived macrophages for 48 h. The protein expression of iNOS, TNF-α, Arg-1 and IL-10 were consistent at mRNA levels. Meanwhile, the expressions of phospho-NF-κB p65 (p-p65), phospho-extracellular signal-regulated kinase (p-ERK) and phospho-p38 MAPK (p-p38) increased significantly, while the expression of Arg-1 decreased significantly. Compared with the negative controls (scramble RNA) (TNF-α: 1.141±0.197, iNOS: 1.173±0.115, IL-10: 1.032±0.138, Arg-1: 0.933±0.044), the mRNA levels of TNF-α (0.342±0.022) and iNOS (0.588±0.085) expressions significantly decreased (t=5.35, P=0.006; t=5.05, P=0.007), while IL-10 (1.786±0.221) and Arg-1 expressions (2.152±0.229) significantly increased (t=3.71, P=0.021; t=6.21, P=0.003) after Pg-LPS stimulation with miR-126 mimic transfection. The relative protein expressions of iNOS, p-p65, p-ERK and p-p38 significantly decreased (t=13.00, P<0.001; t=6.98, P=0.002; t=10.86, P<0.001; t=8.32, P=0.001), while the protein level of Arg-1 significantly increased (t=12.08, P<0.001). Conclusions: Pg-LPS could promote M1 polarization of macrophages. miR-126 might inhibit the effect of Pg-LPS on the M1 polarization of macrophages through down-regulating NF-κB and MAPK signaling pathways.
Cell Polarity
;
Humans
;
Interleukin-10/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Macrophage Activation
;
Macrophages/drug effects*
;
MicroRNAs/metabolism*
;
NF-kappa B/metabolism*
;
Porphyromonas gingivalis
;
RNA, Messenger/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
7.Estradiol inhibits differentiation of mouse macrophage into a pro-inflammatory phenotype by upregulating the IRE1α-XBP1 signaling axis.
Ling Jian ZHUO ; Shuo Chen WANG ; Xing LIU ; Bao An CHEN ; Xiang LI
Journal of Southern Medical University 2022;42(3):432-437
OBJECTIVE:
To explore the mechanism by which estradiol modulates the immunophenotype of macrophages through the endoplasmic reticulum stress pathway.
METHODS:
Peritoneal macrophages isolated from C57 mice were cultured in the presence of 60 ng/mL interferon-γ (IFN-γ) followed by treatment with estradiol (1.0 nmol/L) alone, estradiol with estrogen receptor antagonist (Acolbifene, 4 nmol/L), estradiol with IRE1α inhibitor (4 μ 8 C), or estradiol with IRE1α agonist. After the treatments, the expression levels of MHC-Ⅱ, iNOS and endoplasmic reticulum stress marker proteins IRE1α, eIF2α and ATF6 in the macrophages were detected with Western blotting, and the mRNA levels of TGF-β, IL-6, IL-10 and TNF-α were detected with RT-PCR.
RESULTS:
Estrogen treatment of the macrophages significantly decreased the expressions of M1-related proteins MHC-Ⅱ (P=0.021) and iNOS (P < 0.001) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.004), increased the mRNA expression of TGF-β (P=0.002) and IL-10 (P=0.008), and up-regulated the protein expressions of IRE1α (P < 0.001) and its downstream transcription factor XBP-1 (P < 0.001). Addition of the estrogen inhibitor obviously blocked the effect of estrogen. Compared with estrogen treatment alone, combined treatment of the macrophages with estrogen and the IRE1α inhibitor 4 μ 8 C significantly up-regulated the protein expressions of MHC-Ⅱ (P=0.002) and iNOS (P=0.003) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.024), and obviously down-regulated the mRNA expression of TGF-β (P < 0.001) and IL-10 (P < 0.001); these changes were not observed in cells treated with estrogen and the IRE1α agonist.
CONCLUSION
Estrogen can inhibit the differentiation of murine macrophages into a pro-inflammatory phenotype by up-regulating the IRE1α-XBP-1 signaling axis, thereby producing an inhibitory effect on inflammatory response.
Animals
;
Cell Differentiation/drug effects*
;
Endoribonucleases/metabolism*
;
Estradiol/pharmacology*
;
Estrogens/metabolism*
;
Interleukin-10
;
Interleukin-6/metabolism*
;
Macrophages, Peritoneal/metabolism*
;
Mice
;
Phenotype
;
Protein Serine-Threonine Kinases/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction/drug effects*
;
Transforming Growth Factor beta/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Up-Regulation/drug effects*
;
X-Box Binding Protein 1/metabolism*
8.Therapeutic effects of the extract of Sancao Formula, a Chinese herbal compound, on imiquimod-induced psoriasis via cysteine-rich protein 61.
Wan-Jun GUO ; Yi WANG ; Yu DENG ; Lin-Yan CHENG ; Xin LIU ; Ruo-Fan XI ; Sheng-Jie ZHU ; Xin-Yi FENG ; Liang HUA ; Kan ZE ; Jian-Yong ZHU ; Dong-Jie GUO ; Fu-Lun LI
Journal of Integrative Medicine 2022;20(4):376-384
OBJECTIVE:
Psoriasis is a common chronic inflammatory skin disease that is prone to recurrence, and the proinflammatory factor, cysteine-rich protein 61 (Cyr61), is important in its pathophysiology. Long-term clinical practice has shown that Sancao Formula (SC), a Chinese herbal compound, is effective in the treatment of psoriasis, but the precise mechanism remains unknown. In this study, we investigate the mechanism by which SC extract alleviates imiquimod (IMQ)-induced psoriasis.
METHODS:
The expression of Cyr61 in psoriatic lesions and normal healthy skin was detected using immunohistochemical analysis to investigate the biological role of Cyr61 in models of psoriatic inflammation. A psoriatic mouse model was established by topical application of IMQ, and the effect of topical application of SC extract was evaluated using the psoriasis area and severity index (PASI) score, hematoxylin-eosin staining, and histopathological features of the skin. Next, a HaCaT cell inflammation model was established using interferon-γ (IFN-γ), and the effect of SC extract on the mRNA and protein levels of Cyr61 and intercellular cell adhesion molecule-1 (ICAM-1) was confirmed using Western blot and quantitative real-time polymerase chain reaction analyses.
RESULTS:
Immunohistochemical staining showed that the expression of Cyr61 in psoriatic lesions was higher than that in normal skin samples (78.26% vs 41.18%, P < 0.05), and the number of Cyr61-positive cells in psoriatic lesions was also significantly higher than in normal skin (18.66 ± 2.51 vs 4.33 ± 1.52, P < 0.05). Treatment in mice with IMQ-induced psoriasis showed that SC extract could significantly improve the inflammatory phenotype, PASI score (10.875 ± 0.744 vs 3.875 ± 0.582, P < 0.05), and pathological features compared with those in IMQ model group; SC treatment was also associated with decreased levels of Cyr61 and ICAM-1. In the IFN-γ-induced inflammatory cell model, the mRNA and protein levels of Cyr61 and ICAM-1 were upregulated, while the SC extract downregulated the levels of Cyr61 and ICAM-1.
CONCLUSION
The results provide a theoretical basis for the involvement of Cyr61 in the pathogenesis of psoriasis, and suggest that SC should be used to target Cyr61 for the prevention of psoriasis recurrence.
Animals
;
China
;
Cysteine-Rich Protein 61/metabolism*
;
Disease Models, Animal
;
Drugs, Chinese Herbal/therapeutic use*
;
Imiquimod/adverse effects*
;
Inflammation/drug therapy*
;
Intercellular Adhesion Molecule-1/genetics*
;
Interferon-gamma
;
Mice
;
Mice, Inbred BALB C
;
Psoriasis/pathology*
;
RNA, Messenger/therapeutic use*
9.Sacubitril/valsartan attenuates left ventricular remodeling and improve cardiac function by upregulating apelin/APJ pathway in rats with heart failure.
Hong Zhi LIU ; Chuan Yu GAO ; Fang YUAN ; Yu XU ; Huan TIAN ; Su Qin WANG ; Peng Fei ZHANG ; Ya Nan SHI ; Jing Jing WEI
Chinese Journal of Cardiology 2022;50(7):690-697
Objective: To investigate the effect and mechanism of sacubitril/valsartan on left ventricular remodeling and cardiac function in rats with heart failure. Methods: A total of 46 SPF-grade male Wistar rats weighed 300-350 g were acclimatized to the laboratory for 7 days. Rats were then divided into 4 groups: the heart failure group (n=12, intraperitoneal injection of adriamycin hydrochloride 2.5 mg/kg once a week for 6 consecutive weeks, establishing a model of heart failure); heart failure+sacubitril/valsartan group (treatment group, n=12, intragastric administration with sacubitril/valsartan 1 week before the first injection of adriamycin, at a dose of 60 mg·kg-1·d-1 for 7 weeks); heart failure+sacubitril/valsartan+APJ antagonist F13A group (F13A group, n=12, adriamycin and sacubitril/valsartan, intraperitoneal injection of 100 μg·kg-1·d-1 APJ antagonist F13A for 7 weeks) and control group (n=10, intraperitoneal injection of equal volume of normal saline). One week after the last injection of adriamycin or saline, transthoracic echocardiography was performed to detect the cardiac structure and function, and then the rats were executed, blood and left ventricular specimens were obtained for further analysis. Hematoxylin-eosin staining and Masson trichrome staining were performed to analyze the left ventricular pathological change and myocardial fibrosis. TUNEL staining was performed to detect cardiomyocyte apoptosis. mRNA expression of left ventricular myocardial apelin and APJ was detected by RT-qRCR. ELISA was performed to detect plasma apelin-12 concentration. The protein expression of left ventricular myocardial apelin and APJ was detected by Western blot. Results: Seven rats survived in the heart failure group, 10 in the treatment group, and 8 in the F13A group. Echocardiography showed that the left ventricular end-diastolic diameter (LVEDD) and the left ventricular end-systolic diameter (LVESD) were higher (both P<0.05), while the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were lower in the heart failure group than in the control group (both P<0.05). Compared with the heart failure group, rats in the treatment group were featured with lower LVEDD and LVESD (both P<0.05), higher LVEF and LVFS (both P<0.05), these beneficial effects were reversed in rats assigned to F13A group (all P<0.05 vs. treatment group). The results of HE staining showed that the cardiomyocytes of rats in the control group were arranged neatly and densely structured, the cardiomyocytes in the heart failure group were arranged in disorder, distorted and the gap between cells was increased, the cardiomyocytes in the treatment group were slightly neat and dense, and cardiomyocytes in the F13A group were featured similarly as the heart failure group. Masson staining showed that there were small amount of collagen fibers in the left ventricular myocardial interstitium of the control group, while left ventricular myocardial fibrosis was significantly increased, and collagen volume fraction (CVF) was significantly higher in the heart failure group than that of the control group (P<0.05). Compared with the heart failure group, the left ventricular myocardial fibrosis and the CVF were reduced in the treatment group (both P<0.05), these effects were reversed in the F13A group (all P<0.05 vs. treatment group). TUNEL staining showed that the apoptosis index (AI) of cardiomyocytes in rats was higher in the heart failure group compared with the control group (P<0.05), which was reduced in the treatment group (P<0.05 vs. heart failure group), this effect again was reversed in the F13A group (P<0.05 vs. treatment group). The results of RT-qPCR and Western blot showed that the mRNA and protein levels of apelin and APJ in left ventricular myocardial tissue of rats were downregulated in heart failure group (all P<0.05) compared with the control group. Compared with the heart failure group, the mRNA and protein levels of apelin and APJ were upregulated in the treatment group (all P<0.05), these effects were reversed in the F13A group (all P<0.05 vs. treatment group). ELISA test showed that the plasma apelin concentration of rats was lower in the heart failure group compared with the control group (P<0.05); compared with the heart failure group, the plasma apelin concentration of rats was higher in the treatment group (P<0.05), this effect was reversed in the F13A group (P<0.05 vs. treatment group). Conclusion: Sacubitril/valsartan can partially reverse left ventricular remodeling and improve cardiac function in rats with heart failure through modulating Apelin/APJ pathways.
Aminobutyrates/pharmacology*
;
Animals
;
Apelin/metabolism*
;
Biphenyl Compounds
;
Collagen/metabolism*
;
Doxorubicin/pharmacology*
;
Fibrosis
;
Heart Failure/pathology*
;
Male
;
Myocytes, Cardiac/pathology*
;
RNA, Messenger/metabolism*
;
Rats
;
Rats, Wistar
;
Valsartan/pharmacology*
;
Ventricular Function, Left/drug effects*
;
Ventricular Remodeling
10.Effect of Jinzhen Oral Liquid on cough after lipopolysaccharide-induced infection in rats and mechanism.
Shu-Juan XU ; Hao GUO ; Long JIN ; Zi-Xin LIU ; Gao-Jie XIN ; Yue YOU ; Wei HAO ; Jian-Hua FU ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2022;47(17):4707-4714
This study aims to explore the effect of Jinzhen Oral Liquid(JOL) on cough after infection in rats and the mechanism. To be specific, a total of 60 male SD rats were classified into 6 groups: normal group(equivalent volume of distilled water, ig), model group(equivalent volume of distilled water, ig), Dextromethorphan Hydrobromide Oral Solution group(3.67 mL·kg~(-1), ig), high-, medium-, and low-dose JOL groups(11.34, 5.67, and 2.84 mL·kg~(-1), respectively, ig). Lipopolysaccharide(LPS, nasal drip), smoking, and capsaicin(nebulization) were employed to induce cough after infection in rats except the normal group. Administration began on the 19 th day and lasted 7 days. Capsaicin(nebulization) was used to stimulate cough 1 h after the last administration and the cough frequency and cough incubation period in rats were recorded. The pathological morphology of lung tissue was observed based on hematoxylin-eosin(HE) staining. Immunohistochemistry(IHC) was used to detect the specific expression of transient receptor potential vanilloid 1(Trpv1), nerve growth factor(NGF), tropomyosin receptor kinase A(TrkA), and phosphorylated-p38 mitogen-activated protein kinase(p-p38 MAPK) in lung tissue, Western blot the protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue, and real-time fluorescent quantitative polymerase chain reaction(real-time PCR) the mRNA expression of Trpv1, NGF, and TrkA. The results showed that model group demonstrated significantly high cough frequency, obvious proliferation and inflammatory cell infiltration in lung tissue, significantly enhanced positive protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue and significant increase in the mRNA expression of Trpv1, NGF, and TrkA compared with the normal group. Compared with the model group, JOL can significantly reduce the cough frequency, alleviate the pathological changes of lung tissue, and decrease the protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue, and high-dose and medium-dose JOL can significantly lower the mRNA expression of Trpv1, NGF, and TrkA. This study revealed that JOL can effectively inhibit Trpv1 pathway-related proteins and improve cough after infection. The mechanism is that it reduces the expression of NGF, TrkA, and p-p38 MAPK in lung tissue, thereby decreasing the expression of Trpv1 and cough sensitivity.
Animals
;
Capsaicin/adverse effects*
;
Cough/drug therapy*
;
Dextromethorphan/adverse effects*
;
Eosine Yellowish-(YS)/adverse effects*
;
Hematoxylin
;
Lipopolysaccharides/adverse effects*
;
Male
;
Medicine, Chinese Traditional
;
Nerve Growth Factor/metabolism*
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, trkA/metabolism*
;
TRPV Cation Channels/metabolism*
;
Tropomyosin/metabolism*
;
Water/metabolism*
;
p38 Mitogen-Activated Protein Kinases/metabolism*

Result Analysis
Print
Save
E-mail