1.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
2.Application of "balance-shaped sternal elevation device" in the subxiphoid uniportal video-assisted thoracoscopic surgery for anterior mediastinal masses resection
Jinlan ZHAO ; Weiyang CHEN ; Chunmei HE ; Yu XIONG ; Lei WANG ; Jie LI ; Lin LIN ; Yushang YANG ; Lin MA ; Longqi CHEN ; Dong TIAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):308-312
Objective To introduce an innovative technique, the "balance-shaped sternal elevation device" and its application in the subxiphoid uniportal video-assisted thoracoscopic surgery (VATS) for anterior mediastinal masses resection. Methods Patients who underwent single-port thoracoscopic assisted anterior mediastinal tumor resection through the xiphoid process at the Department of Thoracic Surgery, West China Hospital, Sichuan University from May to June 2024 were included, and their clinical data were analyzed. Results A total of 7 patients were included, with 3 males and 4 females, aged 28-72 years. The diameter of the tumor was 1.9-17.0 cm. The operation time was 62-308 min, intraoperative blood loss was 5-100 mL, postoperative chest drainage tube retention time was 0-9 days, pain score on the 7th day after surgery was 0-2 points, and postoperative hospital stay was 3-12 days. All patients underwent successful and complete resection of the masses and thymus, with favorable postoperative recovery. Conclusion The "balance-shaped sternal elevation device" effectively expands the retrosternal space, providing surgeons with satisfactory surgical views and operating space. This technique significantly enhances the efficacy and safety of minimally invasive surgery for anterior mediastinal masses, reduces trauma and postoperative pain, and accelerates patient recovery, demonstrating important clinical significance and application value.
3.Deep learning for accurate lung artery segmentation with shape-position priors
Chao GUO ; Xuehan GAO ; Qidi HU ; Jian LI ; Haixing ZHU ; Ke ZHAO ; Weipeng LIU ; Shanqing LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):332-338
Objective To propose a lung artery segmentation method that integrates shape and position prior knowledge, aiming to solve the issues of inaccurate segmentation caused by the high similarity and small size differences between the lung arteries and surrounding tissues in CT images. Methods Based on the three-dimensional U-Net network architecture and relying on the PARSE 2022 database image data, shape and position prior knowledge was introduced to design feature extraction and fusion strategies to enhance the ability of lung artery segmentation. The data of the patients were divided into three groups: a training set, a validation set, and a test set. The performance metrics for evaluating the model included Dice Similarity Coefficient (DSC), sensitivity, accuracy, and Hausdorff distance (HD95). Results The study included lung artery imaging data from 203 patients, including 100 patients in the training set, 30 patients in the validation set, and 73 patients in the test set. Through the backbone network, a rough segmentation of the lung arteries was performed to obtain a complete vascular structure; the branch network integrating shape and position information was used to extract features of small pulmonary arteries, reducing interference from the pulmonary artery trunk and left and right pulmonary arteries. Experimental results showed that the segmentation model based on shape and position prior knowledge had a higher DSC (82.81%±3.20% vs. 80.47%±3.17% vs. 80.36%±3.43%), sensitivity (85.30%±8.04% vs. 80.95%±6.89% vs. 82.82%±7.29%), and accuracy (81.63%±7.53% vs. 81.19%±8.35% vs. 79.36%±8.98%) compared to traditional three-dimensional U-Net and V-Net methods. HD95 could reach (9.52±4.29) mm, which was 6.05 mm shorter than traditional methods, showing excellent performance in segmentation boundaries. Conclusion The lung artery segmentation method based on shape and position prior knowledge can achieve precise segmentation of lung artery vessels and has potential application value in tasks such as bronchoscopy or percutaneous puncture surgery navigation.
4.Construction of a nomogram model for predicting risk of spread through air space in sub-centimeter non-small cell lung cancer
Xiao WANG ; Yao ZHANG ; Kangle ZHU ; Yi ZHAO ; Jingwei SHI ; Qianqian XU ; Zhengcheng LIU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):345-352
Objective To investigate the correlation between spread through air space (STAS) of sub-centimeter non-small cell lung cancer and clinical characteristics and radiological features, constructing a nomogram risk prediction model for STAS to provide a reference for the preoperative planning of sub-centimeter non-small cell lung cancer patients. Methods The data of patients with sub-centimeter non-small cell lung cancer who underwent surgical treatment in Nanjing Drum Tower Hospital from January 2022 to October 2023 were retrospectively collected. According to the pathological diagnosis of whether the tumor was accompanied with STAS, they were divided into a STAS positive group and a STAS negative group. The clinical and radiological data of the two groups were collected for univariate logistic regression analysis, and the variables with statistical differences were included in the multivariate analysis. Finally, independent risk factors for STAS were screened out and a nomogram model was constructed. The sensitivity and specificity were calculated based on the Youden index, and area under the curve (AUC), calibration plots and decision curve analysis (DCA) were used to evaluate the performance of the model. Results A total of 112 patients were collected, which included 17 patients in the STAS positive group, consisting of 11 males and 6 females, with a mean age of (59.0±10.3) years. The STAS negative group included 95 patients, with 30 males and 65 females, and a mean age of (56.8±10.3) years. Univariate logistic regression analysis showed that male, anti-GAGE7 antibody positive, mean CT value and spiculation were associated with the occurrence of STAS (P<0.05). Multivariate regression analysis showed that associations between STAS and male (OR=5.974, 95%CI 1.495 to 23.872), anti-GAGE7 antibody positive (OR=11.760, 95%CI 1.619 to 85.408) and mean CT value (OR=1.008, 95%CI 1.004 to 1.013) were still significant (P<0.05), while the association between STAS and spiculation was not significant anymore (P=0.438). Based on the above three independent predictors, a nomogram model of STAS in sub-centimeter non-small cell lung cancer was constructed. The AUC value of the model was 0.890, the sensitivity was 76.5%, and the specificity was 91.6%. The calibration curve was well fitted, suggesting that the model had a good prediction efficiency for STAS. The DCA plot showed that the model had a good clinically utility. Conclusion Male, anti-GAGE7 antibody positive and mean CT value are independent predictors of STAS positivity of sub-centimeter non-small cell lung cancer, and the nomogram model established in this study has a good predictive value and provides reference for preoperative planning of patients.
5.Survival outcomes of segmentectomy versus lobectomy for T1c non-small cell lung cancer: A systematic review and meta-analysis
Xinyu XUE ; Kai ZHAO ; Ningsu CHEN ; Youping LI ; Jiajie YU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):393-400
Objective To evaluate the survival outcomes of segmentectomy versus lobectomy for T1c non-small cell lung cancer (NSCLC). Methods We searched PubMed, EMbase, Cochrane Central Register of Controlled Trials (CENTRAL), CNKI (China National Knowledge Infrastructure), and Wanfang Data, with the search time limit set from the inception of the databases to February 2024. Three researchers independently screened the literature, extracted relevant information, and evaluated the risk of bias of the included literature according to the Newcastle-Ottawa Scale (NOS). Meta-analysis was conducted using STATA 15.1. Results A total of 8 retrospective cohort studies were included, involving 7 433 patients. The NOS scores of the included studies were all ≥7 points. Patients who underwent lobectomy had significantly higher five-year overall survival (OS) rates compared to those who underwent segmentectomy (adjusted HR=1.11, 95%CI 0.99-1.24, P=0.042). Compared with lobectomy, segmentectomy showed no significant difference in adjusted three-year OS rate (adjusted HR=0.88, 95%CI 0.62-1.24) and adjusted five-year lung cancer-specific survival (adjusted HR=1.10, 95%CI 0.80-1.51, P=0.556) of patients with T1c NSCLC. Moreover, there were no differences in the five-year adjusted relapse-free survival (adjusted HR=1.23, 95%CI 0.82-1.85, P=0.319), and adverse events (OR=0.57, 95%CI 0.37-0.90, P=0.015) in the segmentectomy group were significantly less than those in the lobectomy group. Subgroup analysis based on whether patients received neoadjuvant therapy showed that among studies that excluded patients who received neoadjuvant therapy, no significant difference in 5-year adjusted OS rate was observed between the segmentectomy group and lobectomy group (adjusted HR=1.02, 95%CI 0.81-1.28, P=0.870). Conclusion Segmentectomy and lobectomy show no significant difference in long-term survival in stage T1c NSCLC patients, with segmentectomy associated with fewer postoperative complications. Further high-quality research is needed to confirm the comparative efficacy and safety of lobectomy and segmentectomy for T1c NSCLC patients.
6.Distinct Recovery Patterns After Transforaminal Lumbar Interbody Fusion: Comparing Minimally Invasive and Open Approaches Using Mixed-Effects Segmented Regression
Tomoyuki ASADA ; Eric R. ZHAO ; Adin M. EHRLICH ; Adrian LUI ; Andrea PEZZI ; Sereen HALAYQEH ; Tarek HARHASH ; Olivia C. TUMA ; Kasra ARAGHI ; Todd J. ALBERT ; James FARMER ; Russel C. HUANG ; Harvinder SANDHU ; Han Jo KIM ; Francis C. LOVECCHIO ; James E. DOWDELL ; Sravisht IYER ; Sheeraz A. QURESHI
Neurospine 2025;22(1):3-13
Objective:
While minimally invasive-transforaminal lumbar interbody fusion (MIS-TLIF) has shown superiority in key clinical metrics over the open approach, evidence regarding patient-reported outcomes remains limited. This study compared postoperative recovery trajectories and symptomatic improvement phases between MIS and open TLIF.
Methods:
This retrospective review included patients who underwent single-level MIS or open TLIF. Oswestry Disability Index (ODI) and Numerical Rating Scale (NRS) for back and leg pain were collected preoperatively and postoperatively. Segmented regression analysis with mixed-effects modeling, allowing for identification of distinct recovery phases, compared symptomatic trends between approaches.
Results:
Of 324 patients (268 MIS, 56 open), baseline demographics were similar except for greater preoperative leg pain in the MIS group (NRS: 6.0 vs. 5.0, p = 0.027). A segmented regression model identified 4 ODI recovery phases: postoperative disability phase (PDP, day 0 to 13), early improvement phase (day 13 to 28), late improvement phase (day 28 to 110), and plateau phase (later than day 110). The MIS group exhibited significantly lower disability exacerbation during PDP (β = 0.93 vs. 1.42 points per day, p = 0.008). Additionally, the plateau of NRS back occurred significantly earlier in the MIS group than in the open group (MIS, 26.7 ± 2.6 days vs. open, 51.7 ± 6.6 days, p < 0.001).
Conclusion
MIS-TLIF resulted in lower postoperative disability during the first 2 weeks compared to the open approach. Furthermore, low back pain achieved an earlier plateau in back pain by about 4 weeks in the MIS approach.
7.Distinct Recovery Patterns After Transforaminal Lumbar Interbody Fusion: Comparing Minimally Invasive and Open Approaches Using Mixed-Effects Segmented Regression
Tomoyuki ASADA ; Eric R. ZHAO ; Adin M. EHRLICH ; Adrian LUI ; Andrea PEZZI ; Sereen HALAYQEH ; Tarek HARHASH ; Olivia C. TUMA ; Kasra ARAGHI ; Todd J. ALBERT ; James FARMER ; Russel C. HUANG ; Harvinder SANDHU ; Han Jo KIM ; Francis C. LOVECCHIO ; James E. DOWDELL ; Sravisht IYER ; Sheeraz A. QURESHI
Neurospine 2025;22(1):3-13
Objective:
While minimally invasive-transforaminal lumbar interbody fusion (MIS-TLIF) has shown superiority in key clinical metrics over the open approach, evidence regarding patient-reported outcomes remains limited. This study compared postoperative recovery trajectories and symptomatic improvement phases between MIS and open TLIF.
Methods:
This retrospective review included patients who underwent single-level MIS or open TLIF. Oswestry Disability Index (ODI) and Numerical Rating Scale (NRS) for back and leg pain were collected preoperatively and postoperatively. Segmented regression analysis with mixed-effects modeling, allowing for identification of distinct recovery phases, compared symptomatic trends between approaches.
Results:
Of 324 patients (268 MIS, 56 open), baseline demographics were similar except for greater preoperative leg pain in the MIS group (NRS: 6.0 vs. 5.0, p = 0.027). A segmented regression model identified 4 ODI recovery phases: postoperative disability phase (PDP, day 0 to 13), early improvement phase (day 13 to 28), late improvement phase (day 28 to 110), and plateau phase (later than day 110). The MIS group exhibited significantly lower disability exacerbation during PDP (β = 0.93 vs. 1.42 points per day, p = 0.008). Additionally, the plateau of NRS back occurred significantly earlier in the MIS group than in the open group (MIS, 26.7 ± 2.6 days vs. open, 51.7 ± 6.6 days, p < 0.001).
Conclusion
MIS-TLIF resulted in lower postoperative disability during the first 2 weeks compared to the open approach. Furthermore, low back pain achieved an earlier plateau in back pain by about 4 weeks in the MIS approach.
8.Distinct Recovery Patterns After Transforaminal Lumbar Interbody Fusion: Comparing Minimally Invasive and Open Approaches Using Mixed-Effects Segmented Regression
Tomoyuki ASADA ; Eric R. ZHAO ; Adin M. EHRLICH ; Adrian LUI ; Andrea PEZZI ; Sereen HALAYQEH ; Tarek HARHASH ; Olivia C. TUMA ; Kasra ARAGHI ; Todd J. ALBERT ; James FARMER ; Russel C. HUANG ; Harvinder SANDHU ; Han Jo KIM ; Francis C. LOVECCHIO ; James E. DOWDELL ; Sravisht IYER ; Sheeraz A. QURESHI
Neurospine 2025;22(1):3-13
Objective:
While minimally invasive-transforaminal lumbar interbody fusion (MIS-TLIF) has shown superiority in key clinical metrics over the open approach, evidence regarding patient-reported outcomes remains limited. This study compared postoperative recovery trajectories and symptomatic improvement phases between MIS and open TLIF.
Methods:
This retrospective review included patients who underwent single-level MIS or open TLIF. Oswestry Disability Index (ODI) and Numerical Rating Scale (NRS) for back and leg pain were collected preoperatively and postoperatively. Segmented regression analysis with mixed-effects modeling, allowing for identification of distinct recovery phases, compared symptomatic trends between approaches.
Results:
Of 324 patients (268 MIS, 56 open), baseline demographics were similar except for greater preoperative leg pain in the MIS group (NRS: 6.0 vs. 5.0, p = 0.027). A segmented regression model identified 4 ODI recovery phases: postoperative disability phase (PDP, day 0 to 13), early improvement phase (day 13 to 28), late improvement phase (day 28 to 110), and plateau phase (later than day 110). The MIS group exhibited significantly lower disability exacerbation during PDP (β = 0.93 vs. 1.42 points per day, p = 0.008). Additionally, the plateau of NRS back occurred significantly earlier in the MIS group than in the open group (MIS, 26.7 ± 2.6 days vs. open, 51.7 ± 6.6 days, p < 0.001).
Conclusion
MIS-TLIF resulted in lower postoperative disability during the first 2 weeks compared to the open approach. Furthermore, low back pain achieved an earlier plateau in back pain by about 4 weeks in the MIS approach.
9.Distinct Recovery Patterns After Transforaminal Lumbar Interbody Fusion: Comparing Minimally Invasive and Open Approaches Using Mixed-Effects Segmented Regression
Tomoyuki ASADA ; Eric R. ZHAO ; Adin M. EHRLICH ; Adrian LUI ; Andrea PEZZI ; Sereen HALAYQEH ; Tarek HARHASH ; Olivia C. TUMA ; Kasra ARAGHI ; Todd J. ALBERT ; James FARMER ; Russel C. HUANG ; Harvinder SANDHU ; Han Jo KIM ; Francis C. LOVECCHIO ; James E. DOWDELL ; Sravisht IYER ; Sheeraz A. QURESHI
Neurospine 2025;22(1):3-13
Objective:
While minimally invasive-transforaminal lumbar interbody fusion (MIS-TLIF) has shown superiority in key clinical metrics over the open approach, evidence regarding patient-reported outcomes remains limited. This study compared postoperative recovery trajectories and symptomatic improvement phases between MIS and open TLIF.
Methods:
This retrospective review included patients who underwent single-level MIS or open TLIF. Oswestry Disability Index (ODI) and Numerical Rating Scale (NRS) for back and leg pain were collected preoperatively and postoperatively. Segmented regression analysis with mixed-effects modeling, allowing for identification of distinct recovery phases, compared symptomatic trends between approaches.
Results:
Of 324 patients (268 MIS, 56 open), baseline demographics were similar except for greater preoperative leg pain in the MIS group (NRS: 6.0 vs. 5.0, p = 0.027). A segmented regression model identified 4 ODI recovery phases: postoperative disability phase (PDP, day 0 to 13), early improvement phase (day 13 to 28), late improvement phase (day 28 to 110), and plateau phase (later than day 110). The MIS group exhibited significantly lower disability exacerbation during PDP (β = 0.93 vs. 1.42 points per day, p = 0.008). Additionally, the plateau of NRS back occurred significantly earlier in the MIS group than in the open group (MIS, 26.7 ± 2.6 days vs. open, 51.7 ± 6.6 days, p < 0.001).
Conclusion
MIS-TLIF resulted in lower postoperative disability during the first 2 weeks compared to the open approach. Furthermore, low back pain achieved an earlier plateau in back pain by about 4 weeks in the MIS approach.
10.Distinct Recovery Patterns After Transforaminal Lumbar Interbody Fusion: Comparing Minimally Invasive and Open Approaches Using Mixed-Effects Segmented Regression
Tomoyuki ASADA ; Eric R. ZHAO ; Adin M. EHRLICH ; Adrian LUI ; Andrea PEZZI ; Sereen HALAYQEH ; Tarek HARHASH ; Olivia C. TUMA ; Kasra ARAGHI ; Todd J. ALBERT ; James FARMER ; Russel C. HUANG ; Harvinder SANDHU ; Han Jo KIM ; Francis C. LOVECCHIO ; James E. DOWDELL ; Sravisht IYER ; Sheeraz A. QURESHI
Neurospine 2025;22(1):3-13
Objective:
While minimally invasive-transforaminal lumbar interbody fusion (MIS-TLIF) has shown superiority in key clinical metrics over the open approach, evidence regarding patient-reported outcomes remains limited. This study compared postoperative recovery trajectories and symptomatic improvement phases between MIS and open TLIF.
Methods:
This retrospective review included patients who underwent single-level MIS or open TLIF. Oswestry Disability Index (ODI) and Numerical Rating Scale (NRS) for back and leg pain were collected preoperatively and postoperatively. Segmented regression analysis with mixed-effects modeling, allowing for identification of distinct recovery phases, compared symptomatic trends between approaches.
Results:
Of 324 patients (268 MIS, 56 open), baseline demographics were similar except for greater preoperative leg pain in the MIS group (NRS: 6.0 vs. 5.0, p = 0.027). A segmented regression model identified 4 ODI recovery phases: postoperative disability phase (PDP, day 0 to 13), early improvement phase (day 13 to 28), late improvement phase (day 28 to 110), and plateau phase (later than day 110). The MIS group exhibited significantly lower disability exacerbation during PDP (β = 0.93 vs. 1.42 points per day, p = 0.008). Additionally, the plateau of NRS back occurred significantly earlier in the MIS group than in the open group (MIS, 26.7 ± 2.6 days vs. open, 51.7 ± 6.6 days, p < 0.001).
Conclusion
MIS-TLIF resulted in lower postoperative disability during the first 2 weeks compared to the open approach. Furthermore, low back pain achieved an earlier plateau in back pain by about 4 weeks in the MIS approach.

Result Analysis
Print
Save
E-mail