1.Characteristics of T cell immune responses in adults inoculated with 2 doses of SARS-CoV-2 inactivated vaccine for 12 months
Jing WANG ; Ya-Qun LI ; Hai-Yan WANG ; Yao-Ru SONG ; Jing LI ; Wen-Xin WANG ; Lin-Yu WAN ; Chun-Bao ZHOU ; Xing FAN ; Fu-Sheng WANG
Medical Journal of Chinese People's Liberation Army 2024;49(2):165-170
Objective To evaluate the characteristics of different antigen-specific T cell immune responses to severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)after inoculation with 2 doses of SARS-CoV-2 inactivated vaccine for 12 months.Methods Fifteen healthy adults were enrolled in this study and blood samples collected at 12 months after receiving two doses of SARS-CoV-2 inactivated vaccine.The level and phenotypic characteristics of SARS-CoV-2 antigen-specific T lymphocytes were detected by activation-induced markers(AIM)based on polychromatic flow cytometry.Results After 12 months of inoculation with 2 doses of SARS-CoV-2 inactivated vaccine,more than 90%of adults had detectable Spike and Non-spike antigen-specific CD4+ T cells immune responses(Spike:14/15,P=0.0001;Non-spike:15/15,P<0.0001).80%of adults had detectable Spike and Non-spike antigen-specific CD8+ T cells immune responses(Spike:12/15,P=0.0463;Non-spike:12/15,P=0.0806).Antigen-specific CD4+ T cells induced by SARS-CoV-2 inactivated vaccination after 12 months were composed of predominantly central memory(CM)and effector memory 1(EM1)cells.On the other hand,in terms of helper subsets,antigen-specific CD4+ T cells mainly showed T helper 1/17(Th1/17)and T helper 2(Th2)phenotypes.Conclusions SARS-CoV-2 inactivated vaccination generates durable and extensive antigen-specific CD4+ T cell memory responses,which may be the key factor for the low proportion of severe coronavirus disease 2019(COVID-19)infection in China.
2.mRNA delivery and safety evaluation of arginine-rich amphipathic cationic lipopeptides in vivo and in vitro
Yi-chun WANG ; Yi-yao PU ; Qun-jie BI ; Xiang-rong SONG ; Rong-rong JIN ; Yu NIE
Acta Pharmaceutica Sinica 2024;59(4):1079-1086
mRNA gene therapy has attracted much attention due to its advantages such as scalability, modification, no need to enter the nucleus and no integration of host genes. In gene therapy, safe and effective delivery of mRNA into cells is critical for the success of gene therapy. In this study, we designed and synthesized an amphiphilic cationic lipopeptide gene vector (dendritic arginine & disulfide bond-containing cationic lipopeptide, RLS) enriched with branched arginine. We achieved a 1.5-fold higher mRNA transfection efficiency in zebrafish compared to the commercial reagent Lipofectamine 2000, and confirmed its good biosafety by
3.RNA SNP Detection Method With Improved Specificity Based on Dual-competitive-padlock-probe
Qin-Qin ZHANG ; Jin-Ze LI ; Wei ZHANG ; Chuan-Yu LI ; Zhi-Qi ZHANG ; Jia YAO ; Hong DU ; Lian-Qun ZHOU ; Zhen GUO
Progress in Biochemistry and Biophysics 2024;51(11):3021-3033
ObjectiveThe detection of RNA single nucleotide polymorphism (SNP) is of great importance due to their association with protein expression related to various diseases and drug responses. At present, splintR ligase-assisted methods are important approaches for RNA direct detection, but its specificity will be limited when the fidelity of ligases is not ideal. The aim of this study was to create a method to improve the specificity of splintR ligase for RNA detection. MethodsIn this study, a dual-competitive-padlock-probe (DCPLP) assay without the need for additional enzymes or reactions is proposed to improve specificity of splintR ligase ligation. To verify the method, we employed dual competitive padlock probe-mediated rolling circle amplification (DCPLP-RCA) to genotype the CYP2C9 gene. ResultsThe specificity was well improved through the competition and strand displacement of dual padlock probe, with an 83.26% reduction in nonspecific signal. By detecting synthetic RNA samples, the method demonstrated a dynamic detection range of 10 pmol/L-1 nmol/L. Furthermore, clinical samples were applied to the method to evaluate its performance, and the genotyping results were consistent with those obtained using the qPCR method. ConclusionThis study has successfully established a highly specific direct RNA SNP detection method, and provided a novel avenue for accurate identification of various types of RNAs.
4.Design of medical positive pressure protective suit for long-voyage aeromedical evacuation
Yu-Juan SU ; Li-Qun WANG ; Ya-Di ZHANG ; Xiang-Yi YANG ; Zhen-Yao SONG
Chinese Medical Equipment Journal 2024;45(11):113-116
Objective To develop a medical positive pressure protective suit for long-voyage aeromedical evacuation to realize protective isolation and drinking water and energy supply for medical personnel during long-voyage aeromedical evacuation of respiratory infectious disease patients.Methods The medical positive pressure protective suit had a one-piece structure,with its main part made of hydroentangled non-woven fabric,head and forebreast parts made of amorphous polyethylene terephthalate anti-fog material and wearing-and taking-off parts sealed with zipper and autohesion,which was equipped with a portable positive pressure air supply device,an airborne centralized positive pressure air supply device and a monitoring and warning device.The portable positive pressure air supply device was fixed in the back of the suit at the waist,the airborne device was made by modifying the commercially available positive pressure air supply fan,and the monitoring and warning device monitored the air supply volume of the fan,the battery power and the pressure inside the suit.Results The suit behaved well in protection,clean fresh air supply without time limitation and facilitating hydration and energy replenishment of medical personnel by forming three activity spaces.Conclusion The suit developed can continuously provide a clean and comfortable microenvironment,meeting the requirements of medical personnel for protection and hydration and energy replenishment during long-voyage aeromedical evacuation.[Chinese Medical Equipment Journal,2024,45(11):113-116]
5.Clinical characteristics and prognostic analysis of asparaginase-associated pancreatitis in pediatric acute lymphoblastic leukemia
Dun JIANXIN ; Zhang AI ; Wang YAQIN ; Wang YAO ; Liu AIGUO ; Hu QUN
Chinese Journal of Clinical Oncology 2024;51(11):547-551
Objective:To analyze the clinical characteristics and risk factors of asparaginase-associated pancreatitis(AAP)in children with acute lymphoblastic leukemia(ALL),and to investigate the impact of AAP on their prognosis following re-exposure to asparaginase(ASP).Methods:Clinical children data with ALL at Tongji Hospital,Tongji Medical College of Huazhong University of Science and Technology between January 2015 and June 2020 were collected to analyze the clinical features of AAP.Logistic regression was used to identify risk factors for AAP.Prognostic analysis was performed using the Log-rank test and Kaplan-Meier survival curves.Results:Overall,252 children with ALL were included,among whom 23(9.1%)developed AAP.Most AAP cases(82.6%)occurred during remission induction,with a medi-an time from the last ASP to AAP of 12 d.Elevated total cholesterol(≥3.5 mmol/L)at initial diagnosis was identified as an independent risk factor.Six children(26.1%)were re-exposed to ASP,leading to recurrent pancreatitis in 3 cases.The 5-year overall survival(OS)was signific-antly lower in the AAP group(78.3%±8.6%)compared to the non-AAP group(90.3%±2.2%)(P<0.05).Similarly,children who discontinued ASP due to AAP had a 5-year OS of 77.8%±9.8%,significantly lower than the control group(90.1%±2.1%).Conclusions:AAP typically oc-curred within 12 d of the last ASP administration and was associated with poorer 5-year OS.Re-exposure to ASP posed a risk of recurrent AAP;however,completing the ASP chemotherapy regimen may be crucial for improving prognosis.
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.Assessment of the aging phenomenon of the glomerular filtration rate
Xiaohua PEI ; Xue SHEN ; Juan ZHANG ; Yan GU ; Min CHEN ; Yao MA ; Zhenzhu YONG ; Yun BAI ; Qun ZHANG ; Weihong ZHAO
Chinese Journal of Geriatrics 2024;43(6):710-715
Objective:To construct an estimating equation to accurately reflect the aging phenomenon of the glomerular filtration rate(GFR).Methods:Healthy subjects receiving physical examinations at the First Affiliated Hospital of Nanjing Medical University between January 2017 and April 2018 were included in the study, and the aging phenomenon of renal function indicators such as serum creatinine(Scr)was used as the reference standard to evaluate the accuracy of four Scr-based GFR equations during GFR aging, including the full age spectrum(FAS)equation, the Chronic Kidney Disease Epidemiology Collaboration(CKD-EPI)equation, the Osaka equation and the Xiangya equation.Results:Of 37 636 individuals receiving physical examinations, 6 534 met the criteria specified in this study.Scr, serum urea nitrogen, serum uric acid, and serum albumin showed a significant aging phenomenon( H=191.640, 196.693, 83.271, 414.585, P<0.001 for all).The GFR estimated by the four equations all decreased with aging, but the starting point and rate of decline were significantly different.The GFR aging phenomenon estimated by the FAS equation was closer to the trend of renal function indicators. Conclusions:The FAS equation may be more applicable to healthy people to understand the aging phenomenon of GFR.
8.Construction of a model based on multipoint full-layer puncture biopsy for predicting pathological complete response after neoadjuvant therapy for locally advanced rectal cancer
Ying JIN ; Zhiwei ZHAI ; Liting SUN ; Pingdian XIA ; Hang HU ; Chongqiang JIANG ; Baocheng ZHAO ; Hao QU ; Qun QIAN ; Yong DAI ; Hongwei YAO ; Zhenjun WANG ; Jiagang HAN
Chinese Journal of Gastrointestinal Surgery 2024;27(4):403-411
Objective:To investigate the value of transanal multipoint full-layer puncture biopsy (TMFP) in predicting pathological complete response (pCR) after neoadjuvant radiotherapy and chemotherapy (nCRT) in patients with locally advanced rectal cancer (LARC) and to establish a predictive model for providing clinical guidance regarding the treatment of LARC.Methods:In this multicenter, prospective, cohort study, we collected data on 110 LARC patients from four hospitals between April 2020 and March 2023: Beijing Chaoyang Hospital of Capital Medical University (50 patients), Beijing Friendship Hospital of Capital Medical University (41 patients), Qilu Hospital of Shandong University (16 patients), and Zhongnan Hospital of Wuhan University (three patients). The patients had all received TMFP after completing standard nCRT. The variables studied included (1) clinicopathological characteristics; (2) clinical complete remission (cCR) and efficacy of TMFP in determining pCR after NCRT in LARC patients; and (3) hospital attended, sex, age, clinical T- and N-stages, distance between the lower margin of the tumor and the anal verge, baseline and post-radiotherapy serum carcinoembryonic antigen (CEA) and carbohydrate antigen (CA)19-9 concentrations, chemotherapy regimen, use of immunosuppressants with or without radiotherapy, radiation therapy dosage, interval between surgery and radiotherapy, surgical procedure, clinical T/N stage after radiotherapy, cCR, pathological results of TMFP, puncture method (endoscopic or percutaneous), and number and timing of punctures. Single-factor and multifactorial logistic regression analysis were used to determine the factors affecting pCR after NCRT in LARC patients. A prediction model was constructed based on the results of multivariat analysis and the performance of this model evaluated by analyzing subject work characteristics (ROC), calibration, and clinical decision-making (DCA) curves. pCR was defined as complete absence of tumor cells on microscopic examination of the surgical specimens of rectal cancer (including lymph node dissection) after NCRT, that is, ypT0+N0. cCR was defined according to the Chinese Neoadjuvant Rectal Cancer Waiting Watch Database Study Collaborative Group criteria after treatment, which specify an absence of ulceration and nodules on endoscopy; negative rectal palpation; no tumor signals on rectal MRI T2 and DWI sequences; normal serum CEA concentrations, and no evidence of recurrence on pelvic computed tomography/magnetic resonance imaging.Results:Of the 110 patients, 45 (40.9%) achieved pCR after nCRT, which was combined with immune checkpoint inhibitors in 34 (30.9%). cCR was diagnosed before puncture in 38 (34.5%) patients, 43 (39.1%) of the punctures being endoscopic. There were no complications of puncture such as enterocutaneous fistulae, vaginal injury, prostatic injury, or presacral bleeding . Only one (2.3%) patient had a small amount of blood in the stools, which was relieved by anal pressure. cCR had a sensitivity of 57.8% (26/45) for determining pCR, specificity of 81.5% (53/65), accuracy of 71.8% (79/110), positive predictive value 68.4% (26/38), and negative predictive value of 73.6% (53/72). In contrast, the sensitivity of TMFP pathology in determining pCR was 100% (45/45), specificity 66.2% (43/65), accuracy 80.0% (88/110), positive predictive value 67.2% (45/67), and negative predictive value 100.0% (43/43). In this study, the sensitivity of TMFP for pCR (100.0% vs. 57.8%, χ 2=24.09, P<0.001) was significantly higher than that for cCR. However, the accuracy of pCR did not differ significantly (80.0% vs. 71.8%, χ 2=2.01, P=0.156). Univariate and multivariate logistic regression analyses showed that a ≥4 cm distance between the lower edge of the tumor and the anal verge (OR=7.84, 95%CI: 1.48-41.45, P=0.015), non-cCR (OR=4.81, 95%CI: 1.39-16.69, P=0.013), and pathological diagnosis by TMFP (OR=114.29, the 95%CI: 11.07-1180.28, P<0.001) were risk factors for pCR after NCRT in LARC patients. Additionally, endoscopic puncture (OR=0.02, 95%CI: 0.05-0.77, P=0.020) was a protective factor for pCR after NCRT in LARC patients. The area under the ROC curve of the established prediction model was 0.934 (95%CI: 0.892-0.977), suggesting that the model has good discrimination. The calibration curve was relatively close to the ideal 45° reference line, indicating that the predicted values of the model were in good agreement with the actual values. A decision-making curve showed that the model had a good net clinical benefit. Conclusion:Our predictive model, which incorporates TMFP, has considerable accuracy in predicting pCR after nCRT in patients with locally advanced rectal cancer. This may provide a basis for more precisely selecting individualized therapy.
9.Construction of a model based on multipoint full-layer puncture biopsy for predicting pathological complete response after neoadjuvant therapy for locally advanced rectal cancer
Ying JIN ; Zhiwei ZHAI ; Liting SUN ; Pingdian XIA ; Hang HU ; Chongqiang JIANG ; Baocheng ZHAO ; Hao QU ; Qun QIAN ; Yong DAI ; Hongwei YAO ; Zhenjun WANG ; Jiagang HAN
Chinese Journal of Gastrointestinal Surgery 2024;27(4):403-411
Objective:To investigate the value of transanal multipoint full-layer puncture biopsy (TMFP) in predicting pathological complete response (pCR) after neoadjuvant radiotherapy and chemotherapy (nCRT) in patients with locally advanced rectal cancer (LARC) and to establish a predictive model for providing clinical guidance regarding the treatment of LARC.Methods:In this multicenter, prospective, cohort study, we collected data on 110 LARC patients from four hospitals between April 2020 and March 2023: Beijing Chaoyang Hospital of Capital Medical University (50 patients), Beijing Friendship Hospital of Capital Medical University (41 patients), Qilu Hospital of Shandong University (16 patients), and Zhongnan Hospital of Wuhan University (three patients). The patients had all received TMFP after completing standard nCRT. The variables studied included (1) clinicopathological characteristics; (2) clinical complete remission (cCR) and efficacy of TMFP in determining pCR after NCRT in LARC patients; and (3) hospital attended, sex, age, clinical T- and N-stages, distance between the lower margin of the tumor and the anal verge, baseline and post-radiotherapy serum carcinoembryonic antigen (CEA) and carbohydrate antigen (CA)19-9 concentrations, chemotherapy regimen, use of immunosuppressants with or without radiotherapy, radiation therapy dosage, interval between surgery and radiotherapy, surgical procedure, clinical T/N stage after radiotherapy, cCR, pathological results of TMFP, puncture method (endoscopic or percutaneous), and number and timing of punctures. Single-factor and multifactorial logistic regression analysis were used to determine the factors affecting pCR after NCRT in LARC patients. A prediction model was constructed based on the results of multivariat analysis and the performance of this model evaluated by analyzing subject work characteristics (ROC), calibration, and clinical decision-making (DCA) curves. pCR was defined as complete absence of tumor cells on microscopic examination of the surgical specimens of rectal cancer (including lymph node dissection) after NCRT, that is, ypT0+N0. cCR was defined according to the Chinese Neoadjuvant Rectal Cancer Waiting Watch Database Study Collaborative Group criteria after treatment, which specify an absence of ulceration and nodules on endoscopy; negative rectal palpation; no tumor signals on rectal MRI T2 and DWI sequences; normal serum CEA concentrations, and no evidence of recurrence on pelvic computed tomography/magnetic resonance imaging.Results:Of the 110 patients, 45 (40.9%) achieved pCR after nCRT, which was combined with immune checkpoint inhibitors in 34 (30.9%). cCR was diagnosed before puncture in 38 (34.5%) patients, 43 (39.1%) of the punctures being endoscopic. There were no complications of puncture such as enterocutaneous fistulae, vaginal injury, prostatic injury, or presacral bleeding . Only one (2.3%) patient had a small amount of blood in the stools, which was relieved by anal pressure. cCR had a sensitivity of 57.8% (26/45) for determining pCR, specificity of 81.5% (53/65), accuracy of 71.8% (79/110), positive predictive value 68.4% (26/38), and negative predictive value of 73.6% (53/72). In contrast, the sensitivity of TMFP pathology in determining pCR was 100% (45/45), specificity 66.2% (43/65), accuracy 80.0% (88/110), positive predictive value 67.2% (45/67), and negative predictive value 100.0% (43/43). In this study, the sensitivity of TMFP for pCR (100.0% vs. 57.8%, χ 2=24.09, P<0.001) was significantly higher than that for cCR. However, the accuracy of pCR did not differ significantly (80.0% vs. 71.8%, χ 2=2.01, P=0.156). Univariate and multivariate logistic regression analyses showed that a ≥4 cm distance between the lower edge of the tumor and the anal verge (OR=7.84, 95%CI: 1.48-41.45, P=0.015), non-cCR (OR=4.81, 95%CI: 1.39-16.69, P=0.013), and pathological diagnosis by TMFP (OR=114.29, the 95%CI: 11.07-1180.28, P<0.001) were risk factors for pCR after NCRT in LARC patients. Additionally, endoscopic puncture (OR=0.02, 95%CI: 0.05-0.77, P=0.020) was a protective factor for pCR after NCRT in LARC patients. The area under the ROC curve of the established prediction model was 0.934 (95%CI: 0.892-0.977), suggesting that the model has good discrimination. The calibration curve was relatively close to the ideal 45° reference line, indicating that the predicted values of the model were in good agreement with the actual values. A decision-making curve showed that the model had a good net clinical benefit. Conclusion:Our predictive model, which incorporates TMFP, has considerable accuracy in predicting pCR after nCRT in patients with locally advanced rectal cancer. This may provide a basis for more precisely selecting individualized therapy.
10.3D visualisation technology combined with perforator flap transfer in reconstruction of soft tissue defects in traumatic hand and foot injury
Qixiang YIN ; Jingyi MI ; Huazhong CAI ; Feng ZHOU ; Qun YAO ; Yong HUA
Chinese Journal of Microsurgery 2024;47(4):393-399
Objective:To explore the application of 3D visualisation technology combined with perforator flap transfer in reconstruction of soft tissue defects in traumatic hand and foot injury and explore the clinical outcomes.Methods:Between January 2021 and February 2023, a retrospective analysis was conducted in the Department of Emergency of the Affiliated Hospital of Jiangsu University and the Department of Sports Medical of Wuxi No. 9 People's Hospital, on the data of 12 patients (13 flaps) who received surgery of 3D visualisation technology combined with perforator flap transfer for soft tissue defects left by traumatic hand and foot injuries. The patients were 7 males and 5 females aged 45 [36.5, 55.8] years old. Nine patients had the defects in hand and 3 in foot, with 3 in the left and 9 in the right. The sizes of defects ranged from 8.0 cm×6.0 cm to 18.0 cm×17.0 cm. The time from injury to surgery was 13.5 [8.3, 20.8] days. Preoperative CTA scans of donor and recipient sites were performed, and the imaging data were processed for 3D image reconstruction and visualisation. A total of 13 flaps were designed and harvested, including 10 free anterolateral thigh perforator flaps (ALTPFs) and 3 pedicled perforator flaps of fibular artery containing fibular nerve nutrient vessel chains. The flap sizes ranged from 9.0 cm×6.0 cm to 20.0 cm×15.0 cm. Five of the donor sites were directly closed by suture and 8 by skin grafting. Monthly outpatient follow-ups were conducted for the first 3 months after surgery, and then the follow-up reviews were conducted through visits of outpatient clinic or reviewed via WeChat interviews. Information about the outcomes of the transferred flaps, complications and function recovery were recorded on all patients.Results:All 13 flaps were successfully harvested and transferred with the assistance of 3D visualisation technology. Preoperative location of perforator vessels was accurate and flap design was reasonable. The 3D visualisation provided an effective guidance for surgical manipulation. Twelve flaps survived completely after surgery. One flap that had partial necrosis healed after skin grafting. All patients were included in more than 6 months of postoperative follow-up, with a mean follow-up duration of 8.1 months±1.7 months. All flaps had good colour and texture. Four flaps that had swollen appearance received secondary thinning surgery with satisfactory outcomes. The recovery of 9 patients with hand injury was evaluated according to the Blood Circulation Elauation of Severed Finger Replantation Evaluation Standard of Upper Limb Functional of Hand Surgery of Chinese Medical Association. At the final follow-up, the blood supply of flaps was excellent in 11 flaps and good in 2 flaps. Hand function was excellent in 2 hands, good in 4 hands and poor in 3 hands. Scores of American Orthopedic Foot and Ankle Societ(AOFAS) ankle-hindfoot was used for foot function evaluation and all 3 patients were in excellent. Of the postoperative complications, due to a haematoma beneath the flap, a local infection and a delayed fracture healing were occurred in 3 patients separately.Conclusion:The 3D visualisation technology assisted perforator flap transfer can achieve high-quality reconstruction of defects in hand and foot through precise preoperative flap design and simulated surgical incision, therefore it provides a better treatment outcomes for patients.

Result Analysis
Print
Save
E-mail