1.Involvement of Orai1 in tunicamycin-induced endothelial dysfunction.
Hui YANG ; Yumei XUE ; Sujuan KUANG ; Mengzhen ZHANG ; Jinghui CHEN ; Lin LIU ; Zhixin SHAN ; Qiuxiong LIN ; Xiaohong LI ; Min YANG ; Hui ZHOU ; Fang RAO ; Chunyu DENG
The Korean Journal of Physiology and Pharmacology 2019;23(2):95-102
Endoplasmic reticulum (ER) stress is mediated by disturbance of Ca²⁺ homeostasis. The store-operated calcium (SOC) channel is the primary Ca²⁺ channel in non-excitable cells, but its participation in agent-induced ER stress is not clear. In this study, the effects of tunicamycin on Ca²⁺ influx in human umbilical vein endothelial cells (HUVECs) were observed with the fluorescent probe Fluo-4 AM. The effect of tunicamycin on the expression of the unfolded protein response (UPR)-related proteins BiP and CHOP was assayed by western blotting with or without inhibition of Orai1. Tunicamycin induced endothelial dysfunction by activating ER stress. Orai1 expression and the influx of extracellular Ca²⁺ in HUVECs were both upregulated during ER stress. The SOC channel inhibitor SKF96365 reversed tunicamycin-induced endothelial cell dysfunction by inhibiting ER stress. Regulation of tunicamycin-induced ER stress by Orai1 indicates that modification of Orai1 activity may have therapeutic value for conditions with ER stress-induced endothelial dysfunction.
Blotting, Western
;
Calcium
;
Endoplasmic Reticulum
;
Endoplasmic Reticulum Stress
;
Endothelial Cells
;
Homeostasis
;
Human Umbilical Vein Endothelial Cells
;
Tunicamycin
;
Unfolded Protein Response
2.MicroRNA-199a-3p enhances expressions of fibrosis-associated genes through targeting Smad1 in mouse cardiac fibroblasts.
Jingnan LIANG ; Wensi ZHU ; Zhuo ZHANG ; Jiening ZHU ; Yongheng FU ; Qiuxiong LIN ; Sujuan KUANG ; Mengzhen ZHANG ; Zhixin SHAN
Journal of Southern Medical University 2018;38(10):1203-1208
OBJECTIVETo investigate the role of miR-199a-3p in cardiac fibrosis and the potential target of miR-199a-3p.
METHODSCardiac fibroblasts were isolated from C57BL/6 mice and cultured. The miR-199a-3p mimic and Smad1 siRNA were transiently transfected into the cardiac fibroblasts via liposome. Dual luciferase reporter assay was performed to confirm the interaction between miR-199a-3p and the 3'-UTR of Smad1. The expressions of Smad1 and fibrosis-related genes at the mRNA and protein levels in the cells after miR-199a-3p mimic transfection were determined using RT-qPCR and Western blotting, respectively. The expressions of Smad1, Smad3 and fibrosis-related genes at the protein level in cells transfected with miR-199a-3p mimic and Smad1 siRNA were detected using Western blotting.
RESULTSOver-expression of miR-199a-3p significantly increased the expression of cardiac fibrosis-related genes in cultured mouse cardiac fibroblasts. Dual luciferase reporter assay revealed the interaction of miR-199a-3p with the 3'-UTR of Smad1. The results of RT-qPCR and Western blotting confirmed that miR-199a-3p inhibited Smad1 expression at the post- transcriptional level. Transfection with miR-199a-3p mimic and siRNA-mediated Smad1 silencing consistently activated the Smad3 signaling pathway and enhanced the expressions of cardiac fibrosis-related genes in the cardiac fibroblasts.
CONCLUSIONSAs the target gene of miR-199a-3p, Smad1 mediates the pro-fibrotic effect of miR-199a-3p by activating the Smad3 signaling in cultured mouse cardiac fibroblasts.
3.Evaluation the changes of function of right ventricular using Echocardiography after transcatheter closure of atrial septal defect
Yong LIN ; Tiantian TANG ; Pengtao SUN ; Guanghui SONG ; Rui ZHONG ; Qiuxiong CHEN
The Journal of Practical Medicine 2017;33(5):718-721
Objective To evaluate the changes of function of right ventricular using echocardiography after transcatheter closure of atrial septal defect(ASD)and to study the feasibility and superiority of echocardiographic evaluation of right ventricular function. Methods In 70 patients with transcatheter closure of ASD,echocardio?graphic examinations were made different time intervals after the closure to calculate right cardiac morpnology and function. Results After closure ASD in different time intervals, the size of RAEDd1, RAEDd2, RVEDd1, RVEDd2, RVEDd3, Inferior Vena Cava and RIMP, RVEF, TAPSE and FAC were obviously decreased(P<0.01)between two groups. All events were obviously decreased compared precious function(P < 0.01)and the interaction of the time (P < 0.01). Conclusion The construction of right ventricular narrows gradually and the function recovers after transcatheter closure of ASD in a year and those who did not become worse.
4.Model construction of rat coronary artery smooth muscle cell endoplas-mic reticulum stress induced by thapsigargin
Xiaoyan CHEN ; Chunyu DENG ; Sujuan KUANG ; Hui YANG ; Fang RAO ; Zhixin SHAN ; Qiuxiong LIN ; Li JIANG
Chinese Journal of Pathophysiology 2017;33(1):128-132
AIM: To investigate the primary culture method for coronary artery smooth muscle cells (CASMCs), and to establish the endoplasmic reticulum stress ( ERS) model in CASMCs of SD rats.METHODS:CASMCs were cultured by tissue explant method .The morphological characteristics were observed under optical micro-scope.The marker proteins of CASMCs , including α-SMA and SM-MHC, were identified by immunofluorescence tech-nique.The protein expression levels of BiP and CHOP , the marker molecules of ERS, were determined by Western blot . RESULTS:The spindle-shaped CASMCs climbed out from the edge of coronary artery tissues after 6 d, and formed the typical hill and valleygrowth pattern of CASMCs at 9~10 d.The result of immunofluorescence technique showed that α-SMA and SM-MHC were positively expressed .The results of Western blot showed that the protein expression of BiP and CHOP in TG ( 1 and 2 μmol/L ) treatment groups was increased compared with control group .Compared with control group, the protein expression of BiP and CHOP was significantly increased after 1 μmol/L TG treatment for 24 and 48 h. CONCLUSION:CASMCs can be successfully cultured by tissue explant method .ERS model of CASMCs was established by 1 μmol/L TG treatment for 24 h.
5.MicroRNA-1 and-16 inhibit cardiomyocyte hypertrophy by targeting cyclins/Rb pathway
Zhixin SHAN ; Jiening ZHU ; Chunmei TANG ; Wensi ZHU ; Qiuxiong LIN ; Zhiqin HU ; Yongheng FU ; Mengzhen ZHANG
Chinese Journal of Pathophysiology 2016;32(8):1496-1496
AIM:MicroRNAs ( miRNAs) were recognized to play significant roles in cardiac hypertrophy .But, it remains unknown whether cyclin/Rb pathway is modulated by miRNAs during cardiac hypertrophy .This study investigates the potential roles of microRNA-1 (miR-1) and microRNA-16 (miR-16) in modulating cyclin/Rb pathway during cardiomyocyte hypertrophy .METHODS:An animal model of hypertrophy was established in a rat with abdominal aortic constriction (AAC).In addition, a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocyte .RESULTS:miR-1 and-16 expression were markedly de-creased in hypertrophic myocardium and hypertrophic cardiomyocytes in rats .Overexpression of miR-1 and -16 suppressed rat cardiac hypertrophy and hypertrophic phenotype of cultured cardiomyocytes .Expression of cyclins D1, D2 and E1, CDK6 and phosphorylated pRb was increased in hypertrophic myocardium and hypertrophic cardiomyocytes , but could be reversed by enforced expression of miR-1 and -16.CDK6 was validated to be modulated post-transcriptionally by miR-1, and cyclins D1, D2 and E1 were further validated to be modulated post-transcriptionally by miR-16.CONCLUSION: Attenuations of miR-1 and -16 provoke cardiomyocyte hypertrophy via derepressing the cyclins D1, D2, E1 and CDK6, and activating cyclin/Rb pathway.
6.MEF2C mediates the effect of microRNA-214 on inhibiting cardiomyocyte hypertrophy
Chunmei TANG ; Jiening ZHU ; Wensi ZHU ; Qiuxiong LIN ; Zhiqin HU ; Yongheng FU ; Mengzhen ZHANG ; Zhixin SHAN
Chinese Journal of Pathophysiology 2016;32(8):1496-1497
AIM:To investigate the effect of miR-214 on cardiomyocyte hypertrophy and the expression of the potential target genes . METHODS:A cell model of hypertrophy was established based on angiotensin-Ⅱ( Ang-Ⅱ)-induced neonatal mouse ventricular car-diomyocytes (NMVCs).Dual luciferase reporter assay was performed to verify the interaction between miR-214 and the 3’ UTR of MEF2C.The expression of MEF2C and hypertrophy-related genes at mRNA and protein levels was determined by RT-qPCR and Wes-tern blotting, respectively.RESULTS:The expression of ANP, ACTA1,β-MHC and miR-214 was markedly increased in Ang-Ⅱ-in-duced hypertrophic cardiomyocytes .Dual luciferase reporter assay revealed that miR-214 interacted with the 3’ UTR of MEF2C, and miR-214 was verified to inhibit MEF2C expression at the transcriptional level .The protein expression of MEF2C was markedly in-creased in the hypertrophic cardiomyocytes .Moreover, miR-214 mimic, in parallel to MEF2C siRNA, inhibited the expression of hy-pertrophy-related genes in Ang-Ⅱ-induced NMVCs.CONCLUSION:MEF2C is a target gene of miR-214, which mediates the effect of miR-214 on attenuating cardiomyocyte hypertrophy .
7.Effect of circRNA_000203 on fibrotic phenotypes in mouse cardiac fibro-blasts
Wensi ZHU ; Chunmei TANG ; Jiening ZHU ; Qiuxiong LIN ; Yongheng FU ; Chunyu DENG ; Hui YANG ; Fang RAO ; Shulin WU ; Zhixin SHAN
Chinese Journal of Pathophysiology 2016;32(8):1351-1356
AIM:To determine circular RNA (circRNA) profiles in the diabetic mouse myocardium , and to investigate the effect of circRNA_000203 on fibrotic phenotypes in cardiac fibroblasts .METHODS:Masson trichrome stai-ning was performed on the myocardium of the diabetic db /db mice and the non diabetic db/m control mice .circRNA ex-pression profile in the diabetic myocardium was detected by circRNAs microarray .The expression of circRNA_000203 was determined by real time fluorescence quantitative PCR ( RT-qPCR ) .Recombinant circRNA_000203 adenovirus was pre-pared for enforced the expression of circRNA_000203 in mouse cardiac fibroblasts.The expression of Col1a2, Col3a1andα-SMA was determined in circRNA_000203-modified cardiac fibroblasts , respectively .RESULTS:Masson trichrome stai-ning showed that fibrosis was increased in the diabetic mouse myocardium .The results of circRNA array detection revealed that circRNAs were dysregulated in the diabetic myocardium .circRNA_000203 was up-regulated in the diabetic myocardi-um.Significant over-expression of circRNA_000203 was achieved in the cardiac fibroblasts after infection with the recombi-nant circRNA_000203 adenovirus.The mRNA and protein expression of Col1a2, Col3a1 and α-SMA was significantly in-creased in the cardiac fibroblasts with over-expression of circRNA_000203.CONCLUSION:circRNA_000203 is up-regu-lated in the diabetic mouse myocardium .It has pro-fibrotic effect on the cardiac fibroblasts .
8.MEF2C mediates inhibitory effect of microRNA-214 on cardiomyocyte hypertrophy
Chunmei TANG ; Jiening ZHU ; Wensi ZHU ; Qiuxiong LIN ; Zhiqin HU ; Yongheng FU ; Mengzhen ZHANG ; Chunyu DENG ; Honghong TAN ; Shulin WU ; Zhixin SHAN
Chinese Journal of Pathophysiology 2016;32(8):1345-1350
AIM:To investigate the effect of microRNA-214 ( miR-214) on cardiomyocyte hypertrophy and the expression of the potential target genes .METHODS:A cell model of hypertrophy was established based on angiotensin-Ⅱ( Ang-Ⅱ)-induced neonatal mouse ventricular cardiomyocytes ( NMVCs) .Dual luciferase reporter assay was performed to verify the interaction between miR-214 and the 3’ UTR of MEF2C.The expression of MEF2C and hypertrophy-related genes at mRNA and protein levels was determined by RT-qPCR and Western blot , respectively .RESULTS:The expression of ANP, ACTA1,β-MHC and miR-214 was markedly increased in Ang-Ⅱ-induced hypertrophic cardiomyocytes .Dual lu-ciferase reporter assay revealed that miR-214 interacted with the 3’ UTR of MEF2C, and miR-214 was verified to inhibit MEF2C expression at the transcriptional level .The protein expression of MEF2C was markedly increased in the hypertro-phic cardiomyocytes .Moreover, miR-214 mimic, in parallel to MEF2C siRNA, inhibited the expression of hypertrophy-re-lated genes in Ang-Ⅱ-induced NMVCs.CONCLUSION:MEF2C is a target gene of miR-214, which mediates the effect of miR-214 on attenuating cardiomyocyte hypertrophy .
9.Autopsy procedures and pathological observation of spontaneous main organ lesions in Rongshui miniature pig
Hehe SHI ; Xia SUN ; Ke LIU ; Haitao REN ; Gan CHEN ; Wei HUANG ; Zhiyong ZHONG ; Yunzhong LIU ; Qiuxiong LIN ; Xiaojiang TANG
Chinese Journal of Comparative Medicine 2015;(3):42-47
Objective To establish the data including anatomy and histology of main organs in Rongshui miniature pig (RMP).Methods F1 Rongshui miniature pigs with male and female (2 in each group) in 6 month old were used in this experiment.We measured body weights, dissected these pigs after anaesthesia, recorded total blood volume, total plasma volume, number of spine and dental formula, took main organs for photographs, and made histological sections observed and took photographs by microscope.Results We gained the photographs of main organs and histological sections, organ weights,organic coefficients and other basic data.Conclusion Basic anatomy and histology data of main organs in RMP were collected.
10.Cx43 is involved in electrical remodeling of atrial myocytes through regu-lating L-type calcium current
Fang RAO ; Yumei XUE ; Chunyu DENG ; Xiyong YU ; Dingzhang XIAO ; Shaoxian CHEN ; Qiuxiong LIN ; Hui YANG ; Sujuan KUANG ; Xiaoying LIU ; Jiening ZHU ; Shulin WU
Chinese Journal of Pathophysiology 2015;(11):1986-1991
AIM:To investigate whether the association of connexin 43 ( Cx43 ) and L-type calcium channel involved in the pathogenesis of atrial fibrillation ( AF) .METHODS:The biochemical assays and whole-cell patch-clamp technique were used to study the expression of Cx43 in human atrial tissue.The co-localization of Cx43 and L-type calcium channel, and the regulation of L-type calcium current in atrial myocytes were investigated.RESULTS:The expression of Cx43 at mRNA and protein levels was decreased in human atrial tissues of AF patients.In cultured atrium-derived myocytes ( HL-1 cells) , knockdown of Cx43 significantly inhibited the mRNA expression of L-type calcium channelα1c subunit, as well as L-type calcium current.Co-localization of Cx43 with L-type calcium channel α1c subunit in mouse atrial myocytes was observed.CONCLUSION:The decrease in Cx43 is involved in the pathogenesis of AF, probably through reducing the L-type calcium current in atrial myoctyes by co-localization with L-type calcium channel, thus representing the potential pathogenesis in atrial fibrillation.

Result Analysis
Print
Save
E-mail