1.Temporomandibular joint capsule suspension for neocondyle stability in free fibular flap reconstruction of the mandibular condyle
Shuang BAI ; Yao YU ; Wen-Bo ZHANG ; Ya-Qing MAO ; Yang WANG ; Chi MAO ; Dian-Can WANG ; Xin PENG
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(1):46-53
Objectives:
This study evaluates the efficacy of a new temporomandibular joint (TMJ) capsule suspension technique for stabilizing the TMJ after free fibular flap reconstruction of the mandibular condyle.
Patients and Methods:
Patients undergoing the TMJ capsule suspension technique during free fibular flap reconstruction after mandibulectomy with condylectomy (study group; n=9) were compared with a control group (n=9). Mandibular movement trajectory and surface electromyographic signals of bilateral masseters were recorded. The neocondyle–disc relationship was examined with magnetic resonance imaging (MRI) at 6 months after surgery.
Results:
Maximal mouth opening and bilateral marginal movement distances were comparable between the two groups (P>0.05). The asymmetry index of the condyle path length was significantly higher in controls (P=0.02). Bilateral mouth opening trajectories were symmetric in 7 patients and deviated to the affected side in 2 patients in the study group; they deviated to the affected side in all controls. The mean electromyographic values of the masseter on the affected side in resting, maximum bite, and chewing states were comparable between the two groups (P=0.13, P=0.65, and P=0.82, respectively). On MRI at 6 months, the thicknesses of the anterior, medial, and posterior bands and TMJ disc length were similar on the affected and normal sides in the study group (P=0.57, P=0.13, P=0.48, and P=0.87, respectively).
Conclusion
The proposed TMJ capsule suspension technique could improve postoperative TMJ structure and function after fibular free flap reconstruction following mandibulectomy with condylectomy.
2.Temporomandibular joint capsule suspension for neocondyle stability in free fibular flap reconstruction of the mandibular condyle
Shuang BAI ; Yao YU ; Wen-Bo ZHANG ; Ya-Qing MAO ; Yang WANG ; Chi MAO ; Dian-Can WANG ; Xin PENG
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(1):46-53
Objectives:
This study evaluates the efficacy of a new temporomandibular joint (TMJ) capsule suspension technique for stabilizing the TMJ after free fibular flap reconstruction of the mandibular condyle.
Patients and Methods:
Patients undergoing the TMJ capsule suspension technique during free fibular flap reconstruction after mandibulectomy with condylectomy (study group; n=9) were compared with a control group (n=9). Mandibular movement trajectory and surface electromyographic signals of bilateral masseters were recorded. The neocondyle–disc relationship was examined with magnetic resonance imaging (MRI) at 6 months after surgery.
Results:
Maximal mouth opening and bilateral marginal movement distances were comparable between the two groups (P>0.05). The asymmetry index of the condyle path length was significantly higher in controls (P=0.02). Bilateral mouth opening trajectories were symmetric in 7 patients and deviated to the affected side in 2 patients in the study group; they deviated to the affected side in all controls. The mean electromyographic values of the masseter on the affected side in resting, maximum bite, and chewing states were comparable between the two groups (P=0.13, P=0.65, and P=0.82, respectively). On MRI at 6 months, the thicknesses of the anterior, medial, and posterior bands and TMJ disc length were similar on the affected and normal sides in the study group (P=0.57, P=0.13, P=0.48, and P=0.87, respectively).
Conclusion
The proposed TMJ capsule suspension technique could improve postoperative TMJ structure and function after fibular free flap reconstruction following mandibulectomy with condylectomy.
3.Temporomandibular joint capsule suspension for neocondyle stability in free fibular flap reconstruction of the mandibular condyle
Shuang BAI ; Yao YU ; Wen-Bo ZHANG ; Ya-Qing MAO ; Yang WANG ; Chi MAO ; Dian-Can WANG ; Xin PENG
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(1):46-53
Objectives:
This study evaluates the efficacy of a new temporomandibular joint (TMJ) capsule suspension technique for stabilizing the TMJ after free fibular flap reconstruction of the mandibular condyle.
Patients and Methods:
Patients undergoing the TMJ capsule suspension technique during free fibular flap reconstruction after mandibulectomy with condylectomy (study group; n=9) were compared with a control group (n=9). Mandibular movement trajectory and surface electromyographic signals of bilateral masseters were recorded. The neocondyle–disc relationship was examined with magnetic resonance imaging (MRI) at 6 months after surgery.
Results:
Maximal mouth opening and bilateral marginal movement distances were comparable between the two groups (P>0.05). The asymmetry index of the condyle path length was significantly higher in controls (P=0.02). Bilateral mouth opening trajectories were symmetric in 7 patients and deviated to the affected side in 2 patients in the study group; they deviated to the affected side in all controls. The mean electromyographic values of the masseter on the affected side in resting, maximum bite, and chewing states were comparable between the two groups (P=0.13, P=0.65, and P=0.82, respectively). On MRI at 6 months, the thicknesses of the anterior, medial, and posterior bands and TMJ disc length were similar on the affected and normal sides in the study group (P=0.57, P=0.13, P=0.48, and P=0.87, respectively).
Conclusion
The proposed TMJ capsule suspension technique could improve postoperative TMJ structure and function after fibular free flap reconstruction following mandibulectomy with condylectomy.
4.Ultrasonographic characteristics of renal artery involvement in acute Stanford type A aortic dissection and its relationship with renal function: A retrospective cohort study
Qiushan QING ; Xin WEI ; Hong ZHENG ; Zheng WANG ; Changxue WU ; Peirui CHEN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):527-533
Objective To investigate the ultrasonographic characteristics of acute Stanford type A aortic dissection (ATAAD) involving the renal arteries and their relationship with renal function. Methods Patients with ATAAD admitted to Deyang People's Hospital from February 2013 to May 2023 were selected for the study. Based on whether the renal arteries were involved in the dissection, the patients were divided into two groups: a renal artery involvement group and a renal artery non-involvement group. General data and ultrasound characteristics of the two groups were compared. Logistic regression analysis and model correction were performed to analyze the relationship between ultrasound characteristics and renal function involvement in ATAAD patients. Receiver operating characteristic (ROC) curves were used to evaluate the predictive value of ultrasound characteristics for renal artery involvement in ATAAD patients. Additionally, patients in the renal artery involvement group were divided into normal renal function and abnormal renal function subgroups based on serum blood urea nitrogen (BUN) and serum creatinine (Scr) levels. Clinical data of the two subgroups were compared, and a log-binomial model was used to analyze the risk effects of ultrasound characteristics for abnormal renal function. Pearson correlation analysis was performed to assess the correlation between ultrasound characteristics of renal artery involvement and renal function indicators. Results A total of 163 patients were included, consisting of 106 males and 57 females, with a mean age of (50.06±10.46) years (ranging from 20 to 85 years). Significant differences in gender, Scr, and BUN were observed between the renal artery involvement group and the renal artery non-involvement group (P<0.001). Compared to the renal artery non-involvement group, the renal artery involvement group had an increased ascending aorta diameter, a greater proportion of ascending aortic dilation and poor renal perfusion (P<0.05). Logistic regression analysis indicated that ascending aorta diameter, ascending aortic dilation, and poor renal perfusion were independent factors for renal artery involvement (P<0.05). Ultrasonographic characteristics showed good predictive ability for renal artery involvement in ATAAD patients. Furthermore, the combination of the three characteristics yielded a higher predictive value for renal artery involvement. Compared to the normal renal function group, the abnormal renal function group had higher BUN and Scr levels, increased ascending aortic diameter, a greater proportion of ascending aortic dilation and poor renal perfusion (P<0.05). The log-binomial model analysis revealed that the risk ratios for ascending aortic diameter, ascending aortic dilation, and poor renal perfusion were statistically significant both before and after adjustment (P<0.05). Pearson correlation analysis revealed that ascending aortic diameter, ascending aortic dilation, and poor renal perfusion were strongly correlated with renal function parameters (P<0.05). Conclusion Ultrasound characteristics of ATAAD involving the renal arteries are associated with renal function. Ascending aorta diameter, ascending aortic dilation, and poor renal perfusion are independent risk factors for abnormal renal function.
5.The Mechanism of Exercise Regulating Intestinal Flora in The Prevention and Treatment of Depression
Lei-Zi MIN ; Jing-Tong WANG ; Qing-Yuan WANG ; Yi-Cong CUI ; Rui WANG ; Xin-Dong MA
Progress in Biochemistry and Biophysics 2025;52(6):1418-1434
Depression, a prevalent mental disorder with significant socioeconomic burdens, underscores the urgent need for safe and effective non-pharmacological interventions. Recent advances in microbiome research have revealed the pivotal role of gut microbiota dysbiosis in the pathogenesis of depression. Concurrently, exercise, as a cost-effective and accessible intervention, has demonstrated remarkable efficacy in alleviating depressive symptoms. This comprehensive review synthesizes current evidence on the interplay among exercise, gut microbiota modulation, and depression, elucidating the mechanistic pathways through which exercise ameliorates depressive symptoms via the microbiota-gut-brain (MGB) axis. Depression is characterized by gut microbiota alterations, including reduced alpha and beta diversity, depletion of beneficial taxa (e.g., Bifidobacterium, Lactobacillus, and Coprococcus), and overgrowth of pro-inflammatory and pathogenic bacteria (e.g., Morganella, Klebsiella, and Enterobacteriaceae). Metagenomic analyses reveal disrupted metabolic functions in depressive patients, such as diminished synthesis of short-chain fatty acids (SCFAs), impaired tryptophan metabolism, and dysregulated bile acid conversion. For instance, Bifidobacterium longum deficiency correlates with reduced synthesis of neuroactive metabolites like homovanillic acid, while decreased Coprococcus abundance limits butyrate production, exacerbating neuroinflammation. Furthermore, elevated levels of indole derivatives from Clostridium species inhibit serotonin (5-HT) synthesis, contributing to depressive phenotypes. These dysbiotic profiles disrupt the MGB axis, triggering systemic inflammation, neurotransmitter imbalances, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. Exercise exerts profound effects on gut microbiota composition, diversity, and metabolic activity. Longitudinal studies demonstrate that sustained aerobic exercise increases alpha diversity, enriches SCFA-producing genera (e.g., Faecalibacterium prausnitzii, Roseburia, and Akkermansia), and suppresses pathobionts (e.g., Desulfovibrio and Streptococcus). For example, a meta-analysis of 25 trials involving 1 044 participants confirmed that exercise enhances microbial richness and restores the Firmicutes/Bacteroidetes ratio, a biomarker of metabolic health. Notably, endurance training promotes Veillonella proliferation, which converts lactate into propionate, enhancing energy metabolism and delaying fatigue. Exercise also strengthens intestinal barrier integrity by upregulating tight junction proteins (e.g., ZO-1, occludin), thereby reducing lipopolysaccharide (LPS) translocation and systemic inflammation. However, excessive exercise may paradoxically diminish microbial diversity and exacerbate intestinal permeability, highlighting the importance of moderate intensity and duration. Exercise ameliorates depressive symptoms through multifaceted interactions with the gut microbiota, primarily via 4 interconnected pathways. First, exercise mitigates neuroinflammation by elevating anti-inflammatory SCFAs such as butyrate, which suppresses NF-κB signaling to attenuate microglial activation and oxidative stress in the hippocampus. Animal studies demonstrate that voluntary wheel running reduces hippocampal TNF‑α and IL-17 levels in stress-induced depression models, while fecal microbiota transplantation (FMT) from exercised mice reverses depressive behaviors by modulating the TLR4/NF‑κB pathway. Second, exercise regulates neurotransmitter dynamics by enriching GABA-producing Lactobacillus and Bifidobacterium, thereby counteracting neuronal hyperexcitability. Aerobic exercise also enhances the abundance of Lactobacillus plantarum and Streptococcus thermophilus, which facilitate 5-HT and dopamine synthesis. Clinical trials reveal that 12 weeks of moderate exercise increases fecal Coprococcus and Blautia abundance, correlating with improved 5-HT bioavailability and reduced depression scores. Third, exercise normalizes HPA axis hyperactivity by reducing cortisol levels and restoring glucocorticoid receptor sensitivity. In rodent models, chronic stress-induced corticosterone elevation is reversed by probiotic supplementation (e.g., Lactobacillus), which enhances endocannabinoid signaling and hippocampal neurogenesis. Furthermore, exercise upregulates brain-derived neurotrophic factor (BDNF) via microbial metabolites like butyrate, promoting histone acetylation and synaptic plasticity. FMT experiments confirm that exercise-induced microbiota elevates prefrontal BDNF expression, reversing stress-induced neuronal atrophy. Fourth, exercise reshapes microbial metabolic crosstalk, diverting tryptophan metabolism toward 5-HT synthesis instead of neurotoxic kynurenine derivatives. Butyrate inhibits indoleamine 2,3-dioxygenase (IDO), a key enzyme in the kynurenine pathway linked to depression. Concurrently, exercise-induced Akkermansia enrichment enhances mucin production, fortifies the gut barrier, and reduces LPS-driven neuroinflammation. Collectively, these mechanisms underscore exercise as a potent modulator of the microbiota-gut-brain axis, offering a holistic approach to alleviating depression through microbial and neurophysiological synergy. Current evidence supports exercise as a potent adjunct therapy for depression, with personalized regimens (e.g., aerobic, resistance, or yoga) tailored to individual microbiota profiles. However, challenges remain in optimizing exercise prescriptions (intensity, duration, and type) and integrating them with probiotics, prebiotics, or FMT for synergistic effects. Future research should prioritize large-scale randomized controlled trials to validate causality, multi-omics approaches to decipher MGB axis dynamics, and mechanistic studies exploring microbial metabolites as therapeutic targets. The authors advocate for a paradigm shift toward microbiota-centric interventions, emphasizing the bidirectional relationship between physical activity and gut ecosystem resilience in mental health management. In conclusion, this review underscores exercise as a multifaceted modulator of the gut-brain axis, offering novel insights into non-pharmacological strategies for depression. By bridging microbial ecology, neuroimmunology, and exercise physiology, this work lays a foundation for precision medicine approaches targeting the gut microbiota to alleviate depressive disorders.
6.Junctophilin-2 MORN-Helix Domain: Structural Basis for Membrane Binding and Hypertrophic Cardiomyopathy-associated Mutations
Jing-Xin WANG ; Zhi-Wei LI ; Wei LIU ; Wen-Qing ZHANG ; Jian-Chao LI
Progress in Biochemistry and Biophysics 2025;52(8):2103-2116
ObjectiveJunctophilin-2 (JPH2) is an essential structural protein that maintains junctional membrane complexes (JMCs) in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum, thereby facilitating excitation-contraction (E-C) coupling. Mutations in JPH2 have been associated with hypertrophic cardiomyopathy (HCM), but the molecular mechanisms governing its membrane-binding properties and the functional relevance of its membrane occupation and recognition nexus (MORN) repeat motifs remain incompletely understood. This study aimed to elucidate the structural basis of JPH2 membrane association and its implications for HCM pathogenesis. MethodsA recombinant N-terminal fragment of mouse JPH2 (residues1-440), encompassing the MORN repeats and an adjacent helical region, was purified under near-physiological buffer conditions.X-ray crystallography was employed to determine the structure of the JPH2 MORN-Helix domain. Sequence conservation analysis across species and junctophilin isoforms was performed to assess the evolutionary conservation of key structural features. Functional membrane-binding assays were conducted using liposome co-sedimentation and cell-based localization studies in COS7 and HeLa cells. In addition, site-directed mutagenesis targeting positively charged residues and known HCM-associated mutations, including R347C, was used to evaluate their effects on membrane interaction and subcellular localization. ResultsThe crystal structure of the mouse JPH2 MORN-Helix domain was resolved at 2.6 Å, revealing a compact, elongated architecture consisting of multiple tandem MORN motifs arranged in a curved configuration, forming a continuous hydrophobic core stabilized by alternating aromatic residues. A C-terminal α-helix further reinforced structural integrity. Conservation analysis identified the inner groove of the MORN array as a highly conserved surface, suggesting its role as a protein-binding interface. A flexible linker segment enriched in positively charged residues, located adjacent to the MORN motifs, was found to mediate direct electrostatic interactions with negatively charged phospholipid membranes. Functional assays demonstrated that mutation of these basic residues impaired membrane association, while the HCM-linked R347C mutation completely abolished membrane localization in cellular assays, despite preserving the overall MORN-Helix fold in structural modeling. ConclusionThis study provides structural insight into the membrane-binding mechanism of the cardiomyocyte-specific protein JPH2, highlighting the dual roles of its MORN-Helix domain in membrane anchoring and protein interactions. The findings clarify the structural basis for membrane targeting via a positively charged linker and demonstrate that disruption of this interaction—such as that caused by the R347C mutation—likely contributes to HCM pathogenesis. These results not only enhance current understanding of JPH2 function in cardiac E-C coupling but also offer a structural framework for future investigations into the assembly and regulation of JMCs in both physiological and disease contexts.
7.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
8.Influence of network latency and bandwidth on robot-assisted laparoscopic telesurgery: A pre-clinical experiment.
Ye WANG ; Qing AI ; Taoping SHI ; Yu GAO ; Bin JIANG ; Wuyi ZHAO ; Chengjun JIANG ; Guojun LIU ; Lifeng ZHANG ; Huaikang LI ; Fan GAO ; Xin MA ; Hongzhao LI ; Xu ZHANG
Chinese Medical Journal 2025;138(3):325-331
BACKGROUND:
Telesurgery has the potential to overcome spatial limitations for surgeons, which depends on surgical robot and the quality of network communication. However, the influence of network latency and bandwidth on telesurgery is not well understood.
METHODS:
A telesurgery system capable of dynamically adjusting image compression ratios in response to bandwidth changes was established between Beijing and Sanya (Hainan province), covering a distance of 3000 km. In total, 108 animal operations, including 12 surgical procedures, were performed. Total latency ranging from 170 ms to 320 ms and bandwidth from 15-20 Mbps to less than 1 Mbps were explored using designed surgical tasks and hemostasis models for renal vein and internal iliac artery rupture bleeding. Network latency, jitter, frame loss, and bit rate code were systemically measured during these operations. National Aeronautics and Space Administration Task Load Index (NASA-TLX) and a self-designed scale measured the workload and subjective perception of surgeons.
RESULTS:
All 108 animal telesurgeries, conducted from January 2023 to June 2023, were performed effectively over a total duration of 3866 min. The operations were completed with latency up to 320 ms and bandwidths as low as 1-5 Mbps. Hemostasis for vein and artery rupture bleeding models was effectively achieved under these low bandwidth conditions. The NASA-TLX results indicated that latency significantly impacted surgical performance more than bandwidth and image clarity reductions.
CONCLUSIONS
This telesurgery system demonstrated safety and reliability. A total of 320 ms latency is acceptable for telesurgery operations. Reducing image clarity can effectively mitigate the potential latency increase caused by decreased bandwidth, offering a new method to reduce the impact of latency on telesurgery.
Animals
;
Robotic Surgical Procedures/methods*
;
Laparoscopy/methods*
9.Association of NLRP3 genetic variant rs10754555 with early-onset coronary artery disease.
Lingfeng ZHA ; Chengqi XU ; Mengqi WANG ; Shaofang NIE ; Miao YU ; Jiangtao DONG ; Qianwen CHEN ; Tian XIE ; Meilin LIU ; Fen YANG ; Zhengfeng ZHU ; Xin TU ; Qing K WANG ; Zhilei SHAN ; Xiang CHENG
Chinese Medical Journal 2025;138(21):2844-2846
10.Pharmacokinetics study of Dayuanyin in normal and febrile rats.
Yu-Jie HOU ; Kang-Ning XIAO ; Jian-Yun BI ; Xin-Jun ZHANG ; Xin-Rui LI ; Yu-Qing WANG ; Ming SU ; Xin-Ru SUN ; Hui ZHANG ; Bo-Yang WANG ; Li-Jie WANG ; Shan-Xin LIU
China Journal of Chinese Materia Medica 2025;50(2):527-533
Based on the pharmacokinetics theory, this study investigated the pharmacokinetic characteristics of albiflorin, paeoniflorin, wogonoside, and wogonin in normal and febrile rats and summarized absorption and elimination rules of Dayuanyin in them to provide reference for further development and clinical application of Dayuanyin. Blood samples were taken from the fundus venous plexus of normal and model rats after intragastric administration of Dayuanyin at different time points. The concentration of each substance in blood was determined by ultra performance liquid chromatography-triple quadrupole mass spectrometry(UPLC-MS/MS) technique at different time points. DAS 2.0, a piece of pharmacokinetics software, was used to calculate the pharmacokinetic parameters of each component. The results show that the 4 components had good linear relationship in their respective ranges, and the results of methodological investigation met the requirements. The pharmacokinetic parameters of C_(max), T_(max), t_(1/2), AUC_(0-t), AUC_(0-∞), and MRT_(0-t) were calculated by the DAS 2.0 non-compartmental model. Compared with those in the normal group, C_(max) and AUC_(0-t) of the 4 components in the model group were significantly increased. There were significant differences in the pharmacokinetic characteristics between the normal and model groups, suggesting that the absorption and elimination of Dayuanyin may be affected by the changes of internal environment of the body in different physiological states.
Animals
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Fever/metabolism*
;
Tandem Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Glucosides/pharmacokinetics*
;
Monoterpenes

Result Analysis
Print
Save
E-mail