1.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
		                        		
		                        			
		                        			Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
		                        		
		                        		
		                        		
		                        	
2.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
		                        		
		                        			
		                        			Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
		                        		
		                        		
		                        		
		                        	
3.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
		                        		
		                        			
		                        			Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
		                        		
		                        		
		                        		
		                        	
4.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
		                        		
		                        			
		                        			Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.
		                        		
		                        		
		                        		
		                        	
5.Changing resistance profiles of Staphylococcus isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yuling XIAO ; Mei KANG ; Yi XIE ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(5):570-580
		                        		
		                        			
		                        			Objective To investigate the changing distribution and antibiotic resistance profiles of clinical isolates of Staphylococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Staphylococcus according to the unified protocol of CHINET(China Antimicrobial Surveillance Network)using disk diffusion method and commercial automated systems.The CHINET antimicrobial resistance surveillance data from 2015 to 2021 were interpreted according to the 2021 CLSI breakpoints and analyzed using WHONET 5.6.Results During the period from 2015 to 2021,a total of 204,771 nonduplicate strains of Staphylococcus were isolated,including 136,731(66.8%)strains of Staphylococcus aureus and 68,040(33.2%)strains of coagulase-negative Staphylococcus(CNS).The proportions of S.aureus isolates and CNS isolates did not show significant change.S.aureus strains were mainly isolated from respiratory specimens(38.9±5.1)%,wound,pus and secretions(33.6±4.2)%,and blood(11.9±1.5)%.The CNS strains were predominantly isolated from blood(73.6±4.2)%,cerebrospinal fluid(12.1±2.5)%,and pleural effusion and ascites(8.4±2.1)%.S.aureus strains were mainly isolated from the patients in ICU(17.0±7.3)%,outpatient and emergency(11.6±1.7)%,and department of surgery(11.2±0.9)%,whereas CNS strains were primarily isolated from the patients in ICU(32.2±9.7)%,outpatient and emergency(12.8±4.7)%,and department of internal medicine(11.2±1.9)%.The prevalence of methicillin-resistant strains was 32.9%in S.aureus(MRSA)and 74.1%in CNS(MRCNS).Over the 7-year period,the prevalence of MRSA decreased from 42.1%to 29.2%,and the prevalence of MRCNS decreased from 82.1%to 68.2%.MRSA showed higher resistance rates to all the antimicrobial agents tested except trimethoprim-sulfamethoxazole than methicillin-susceptible S.aureus(MSSA).Over the 7-year period,MRSA strains showed decreasing resistance rates to gentamicin,rifampicin,and levofloxacin,MRCNS showed decreasing resistance rates to gentamicin,erythromycin,rifampicin,and trimethoprim-sulfamethoxazole,but increasing resistance rate to levofloxacin.No vancomycin-resistant strains were detected.The prevalence of linezolid-resistant MRCNS increased from 0.2%to 2.3%over the 7-year period.Conclusions Staphylococcus remains the major pathogen among gram-positive bacteria.MRSA and MRCNS were still the principal antibiotic-resistant gram-positive bacteria.No S.aureus isolates were found resistant to vancomycin or linezolid,but linezolid-resistant strains have been detected in MRCNS isolates,which is an issue of concern.
		                        		
		                        		
		                        		
		                        	
6.Effect of Hirudo on autophagy in atherosclerotic mice
Qian-Qian HAN ; Yun-Yun PAN ; Zi-Yun WEN ; Qing LÜ ; Liang WEI ; Meng-Yi LI ; Min HONG
The Chinese Journal of Clinical Pharmacology 2024;40(5):688-692
		                        		
		                        			
		                        			Objective To explore the anti-atherosclerosis mechanism of Hirudo and its effect on autophagy in mice.Methods Forty healthy male ApoE-/-mice were randomly divided into model group,control group(3 × 10-3 g·kg-1·d-1 simvastatin)and experimental-L,experimental-M,experimental-H groups(0.45,0.9,1.8 g·kg-1· d-1,Maixuekang capsule).Eight healthy male C57BL/6J mice were divided into blank group.The mice were fed with common diet for 1 week.Then,except blank group,other groups were fed with high-fat diet.After 8 weeks of modeling,the atherosclerosis(AS)mice were given drugs orally once a day for 12 weeks,and fed with high-fat diet in the meantime.The levels of interleukin-6(IL-6),tumor necrosis factor-α(TNF-α)in serum were determined by enzyme-linked immunosorbent assay(ELISA).The levels of Beclin-1,LC3 autophagy protein were detected by Western blot method.Results The IL-6 contents in the experimental-H,experimental-M,experimental-L,control,model and blank groups were(107.59±3.03),(99.31±5.12),(103.52±2.28),(98.68±4.68),(112.66±6.08),(93.98±3.43)pg·mL-1;the TNF-α contents were(538.41±30.26),(504.49±21.51),(538.51±19.05),(494.05±25.08),(578.53±26.32),(467.35±21.53)pg·mL-1.For the above indexes,the differences between model group and experimental-H group,experimental-M group,experimental-L group,control group,blank group were all statistically significant(all P<0.05).The Beclin-1 protein expression levels in the experimental-H,experimental-M,experimental-L,control and model groups were 1.48±0.05,1.72±0.05,1.19±0.02,1.51±0.04,0.66±0.03;the LC3 Ⅱ protein expression levels were 1.53±0.01,1.83±0.02,1.16±0.01,1.90±0.01,0.49±0.01,and the differences between model group and experimental-H group,experimental-M group,experimental-L group,control group were all statistically significant(all P<0.05).Conclusion Hirudo can significantly reduce the area of atherosclerotic plaque by regulating the level of autophagy.
		                        		
		                        		
		                        		
		                        	
7.effects of isoliquiritigenin on airway inflammation in neutrophil asthma mice based on VSIG4/NLRP3 inflammatory complex pathway
Qing-Yu HU ; Zong-Li LÜ ; Wen-Juan LIU
The Chinese Journal of Clinical Pharmacology 2024;40(6):869-873
		                        		
		                        			
		                        			Objective To investigate the effect of isoliquiritigenin on airway inflammation mice with neutrophil asthma and its possible mechanism.Methods Neutrophil asthma mouse model were established using ovalbumin.Balb/c mice were randomly divided into control group(equal amounts of 0.9%NaCl were given),model group(ovalbumin modeling),DXM group(intraperitoneal injection of 4 mg·kg-1 dexamethasone),experimental-L,-H groups(intraperitoneal injection of 100,200 mg·kg-1 isoliquiritigenin),with 11 mice in each group.Airway resistance of each group of mice was detected within 24 h after the last atomization excitation,and lung tissue and bronchoalveolar lavage fluid were taken;the total cell count was performed by cell counting plate;the cell classification count was performed by Richs-giemsa staining;the levels of inflammatory factors in bronchoalveolar lavage fluid were detected by enzyme-linked immunosorbent assay;Weatern blot assay was used to detect protein expression in lung tissue.Results The airway resistance values of control group,model group,DXM group,experimental-L group and experimental-H group were(0.84±0.08),(3.34±0.34),(1.23±0.15),(2.47±0.19)and(1.54±0.18)cmH2 O·s-1;the total number of white blood cells were(15.03±0.11),(331.20±26.64),(38.73±3.28),(180.35±16.89)and(82.74±10.51)x 104·mL-1;interleukin 17(IL-17)levels were(4.79±0.58),(19.21±2.39),(6.35±0.81),(15.96±1.10)and(9.04±0.65)pg·mL-1;V-set and immunoglobulin domain-containing 4(VSIG4)protein expression levels were 0.67±0.04,0.24±0.04,0.59±0.06,0.37±0.04 and 0.53±0.05;Nod-like receptor family heat protein domain associated protein 3(NLRP3)protein expression levels were 0.24±0.02,0.74±0.07,0.35±0.04,0.65±0.08 and 0.44±0.03,respectively.The above indexes were compared between the model group and the control group,and the above indexes of DXM,experimental-L and experimental-H groups were compared with model group,and the differences were statistically significant(all P<0.05).Conclusion Isoliquiritigenin may regulate the VSIG4/NLRP3 complex inflammatory pathway,reduce airway resistance,inhibit the release of inflammatory mediators and improve airway inflammation in mice with neutrophil asthma.
		                        		
		                        		
		                        		
		                        	
8.Bioinformatics analysis and prokaryotic expression of Strongyloides stercoralis serine protease inhibitor 1
Xue HAN ; Xianglian BI ; Hongying ZHAO ; Yunliang SHI ; Qing WEN ; Jiayin LÜ ; Jiayue SUN ; Xiaoyin FU ; Dengyu LIU
Chinese Journal of Schistosomiasis Control 2023;35(3):244-250
		                        		
		                        			
		                        			 Objective To predict the structure and antigenic epitope of the Strongyloides stercoralis serine protease inhibitor 1 (Ss-SRPN-1) protein using bioinformatics tools, and to construct prokaryotic expression plasmids for expression of recombinant Ss-SRPN-1 protein, so as to provide the basis for unraveling the function of the Ss-SRPN-1 protein. Methods The amino acid sequence of the Ss-SRPN-1 protein was downloaded from the NCBI database, and the physicochemical properties, structure and antigenic epitopes of the Ss-SRPN-1 protein were predicted using bioinformatics tools, including ExPASy, SWISS-MODEL and Protean. Primers were designed according to the nucleotide sequences of Ss-SRPN-1, and the Ss-SRPN-1 gene was amplified, cloned and sequenced with genomic DNA extracted from the infective third-stage larvae of S. stercoralis as a template. The Ss-SRPN-1 protein sequence was cloned into the pET28a (+) expression vector and transformed into Escherichia coli BL21 (DE) cells for induction of the recombinant Ss-SRPN-1 protein expression. The recombinant Ss-SRPN-1 protein was then purified and identified using Western blotting and mass spectrometry. Results Bioinformatics analysis showed that the Ss-SRPN-1 protein, which was composed of 372 amino acids and had a molecular formula of C1948H3046N488O575S16, was a stable hydrophilic protein, and the subcellular localization of the protein was predicted to be extracellular. The Ss-SRPN-1 protein was predicted to contain 11 dominant B-cell antigenic epitopes and 20 T-cell antigenic epitopes. The Ss-SRPN-1 gene with a length of 1 119 bp was successfully amplified, and the recombinant plasmid pET28a (+)/Ss-SRPN-1 was constructed and transformed into E. coli BL21(DE) cells. The expressed recombinant Ss-SRPN-1 protein had a molecular weight of approximately 43 kDa, and was characterized as a Ss-SRPN-1 protein. Conclusions The recombinant Ss-SRPN-1 protein has been expressed successfully, and this recombinant protein may be a potential vaccine candidate against strongyloidiasis. 
		                        		
		                        		
		                        		
		                        	
9.Risk factors of systemic allergic reactions caused by subcutaneous allergen immunotherapy.
Li Sha LI ; Kai GUAN ; Jia YIN ; Liang Lu WANG ; Yu Xiang ZHI ; Jin Lü SUN ; Hong LI ; Li Ping WEN ; Rui TANG ; Jian Qing GU ; Zi Xi WANG ; Le CUI ; Ying Yang XU ; Sai Nan BIAN
Chinese Journal of Preventive Medicine 2023;57(12):1972-1977
		                        		
		                        			
		                        			Objective: To investigate the incidence and risk factors of systemic allergic reactions induced by subcutaneous immunotherapy (SCIT) in patients undergoing SCIT injections in Peking Union Medical College Hospital (PUMCH). Methods: This is a single center retrospective cohort study. Using the outpatient information system of PUMCH, the demographic information and injection-related reaction data of patients undergoing SCIT injection in Allergy Department of PUMCH from December 2018 to December 2022 were retrospectively analyzed to count the incidence and risk factors of systemic allergic reactions caused by SCIT. Mann-Whitney nonparametric test or chi-square test was used for single-factor analysis, and multiple logistic regression was used for multiple-factor analysis. Results: A total of 2 897 patients received 18 070 SCIT injections in Allergy Department during the four years, and 40 systemic allergic reactions occurred, with the overall incidence rate of 0.22%. The incidence of systemic allergic reaction was 0.37% when using imported dust mite preparation and 0.15% when using domestic multi-component allergen preparation. The risk factors significantly related with SCIT-induced systemic allergic reactions in patients using imported dust mite preparation were age less than 18 years old (OR=3.186,95%CI: 1.255-8.085), highest injection concentration (OR value could not be calculated because all patients with systemic reactions were injected with highest concentration), and large local reaction in previous injection (OR=22.264,95%CI: 8.205-60.411). The risk factors for SCIT-induced systemic allergic reactions in patients using domestic allergen preparation were 5 or more types of allergens (OR=3.455,95%CI: 1.147-10.402), highest injection concentration (OR=3.794,95%CI: 1.226-11.740) and large local reaction in previous injection (OR=63.577,95%CI: 22.248-181.683). However, SCIT injection in pollen allergic patients during the pollen season did not show a correlation with systemic allergic reaction. Conclusion: The incidence of SCIT-induced systemic allergic reactions was low in the Chinese patient population of this study. Patients with one or more risk factors, such as multiple allergen injection, highest injection concentration, large local reaction in previous injection, should be given high attention and vigilance against systemic allergic reactions.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Allergens
		                        			;
		                        		
		                        			Asian People
		                        			;
		                        		
		                        			Desensitization, Immunologic/adverse effects*
		                        			;
		                        		
		                        			Hypersensitivity/epidemiology*
		                        			;
		                        		
		                        			Retrospective Studies
		                        			
		                        		
		                        	
10.Risk factors of systemic allergic reactions caused by subcutaneous allergen immunotherapy.
Li Sha LI ; Kai GUAN ; Jia YIN ; Liang Lu WANG ; Yu Xiang ZHI ; Jin Lü SUN ; Hong LI ; Li Ping WEN ; Rui TANG ; Jian Qing GU ; Zi Xi WANG ; Le CUI ; Ying Yang XU ; Sai Nan BIAN
Chinese Journal of Preventive Medicine 2023;57(12):1972-1977
		                        		
		                        			
		                        			Objective: To investigate the incidence and risk factors of systemic allergic reactions induced by subcutaneous immunotherapy (SCIT) in patients undergoing SCIT injections in Peking Union Medical College Hospital (PUMCH). Methods: This is a single center retrospective cohort study. Using the outpatient information system of PUMCH, the demographic information and injection-related reaction data of patients undergoing SCIT injection in Allergy Department of PUMCH from December 2018 to December 2022 were retrospectively analyzed to count the incidence and risk factors of systemic allergic reactions caused by SCIT. Mann-Whitney nonparametric test or chi-square test was used for single-factor analysis, and multiple logistic regression was used for multiple-factor analysis. Results: A total of 2 897 patients received 18 070 SCIT injections in Allergy Department during the four years, and 40 systemic allergic reactions occurred, with the overall incidence rate of 0.22%. The incidence of systemic allergic reaction was 0.37% when using imported dust mite preparation and 0.15% when using domestic multi-component allergen preparation. The risk factors significantly related with SCIT-induced systemic allergic reactions in patients using imported dust mite preparation were age less than 18 years old (OR=3.186,95%CI: 1.255-8.085), highest injection concentration (OR value could not be calculated because all patients with systemic reactions were injected with highest concentration), and large local reaction in previous injection (OR=22.264,95%CI: 8.205-60.411). The risk factors for SCIT-induced systemic allergic reactions in patients using domestic allergen preparation were 5 or more types of allergens (OR=3.455,95%CI: 1.147-10.402), highest injection concentration (OR=3.794,95%CI: 1.226-11.740) and large local reaction in previous injection (OR=63.577,95%CI: 22.248-181.683). However, SCIT injection in pollen allergic patients during the pollen season did not show a correlation with systemic allergic reaction. Conclusion: The incidence of SCIT-induced systemic allergic reactions was low in the Chinese patient population of this study. Patients with one or more risk factors, such as multiple allergen injection, highest injection concentration, large local reaction in previous injection, should be given high attention and vigilance against systemic allergic reactions.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Allergens
		                        			;
		                        		
		                        			Asian People
		                        			;
		                        		
		                        			Desensitization, Immunologic/adverse effects*
		                        			;
		                        		
		                        			Hypersensitivity/epidemiology*
		                        			;
		                        		
		                        			Retrospective Studies
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail