1.Identification of TEAD1 Transcripts and Functional Analysis in Chicken Preadipocytes
Min PENG ; Hu XU ; Zi-Qiu JIA ; Qing-Zhu YANG ; Lin PAN ; Wei-Yu WANG ; Ling-Zhe KONG ; Ying-Ning SUN
Progress in Biochemistry and Biophysics 2024;51(1):215-229
ObjectiveAlthough expression of the TEAD1 protein in preadipocytes has been established, its function remains unclear. In this study, we sought to detect transcripts of TEAD1 in chicken and to examine the effects of this protein on the proliferation, migration, apoptosis, and differentiation of immortalized chicken preadipocyte cell lines (ICP1). MethodsThe full-length sequence of the TEAD1 gene was cloned and the two transcripts were subjected to bioinformatics analysis. The subcellsular localization of TEAD1 transcripts was determined based on indirect immunofluorescence. The effects of TEAD1 transcripts overexpression on the proliferation of ICP1 cells were examined by RT-qPCR, CCK-8, and EdU assays; the effects of TEAD1 transcripts on ICP1 cells migration were examined based on the scratch test; and the effects of TEAD1 transcripts overexpression on ICP1 cells apoptosis were analyzed using apoptosis-Hoechst staining and RT-qPCR. The expression of TEAD1 transcripts in different tissues, cells lines, and ICP1 at different periods of differentiation was analyzed by RT-qPCR. The effects of TEAD1 transcripts overexpression on lipid droplet accumulation and adipogenic-related gene expression in ICP1 cells were analyzed based on Oil Red O and BODIPY staining, RT-qPCR, Western blot, and dual-luciferase reporter gene assays. Finally, the content of triglyceride (TG) was measured in TEAD1 overexpressed ICP1 cells. ResultsThe full-length TEAD1 was cloned and two TEAD1 transcripts were identified. The TEAD1-V1 protein was found to be localized primarily in the cell nucleus, whereas the TEAD1-V2 protein is localized in the cell cytoplasm and nucleus. The overexpression of both TEAD1-V1 and TEAD1-V2 significantly inhibited the proliferation of ICP1 cells. Whereas the overexpression of TEAD1-V1 promoted ICP1 cell migration, the overexpression of TEAD1-V2 had no significant effects on ICP1 migration; the overexpression of both TEAD1-V1 and TEAD1-V2 significantly promoted the apoptosis of ICP1 cells. We found that the different transcripts of TEAD1 have similar expression pattern in different tissues and cells lines. During induced preadipocyte differentiation, the expression of these genes initially declined, although subsequently increased. Overexpression of TEAD1-V1 promoted a significant reduction in lipid droplet formation and inhibited C/EBPα expression during the differentiation of ICP1 cells (P<0.05). However, the overexpression of TEAD1-V2 had no significant effect on lipid droplet accumulation or the expression of adipogenic-related proteins (P>0.05). Overexpression of TEAD1-V1 significantly decreased triglyceride content in ICP1 cells (P<0.05), while overexpression of TEAD1-V2 had no effect on triglyceride content in ICP1 cells (P>0.05). ConclusionIn this study, for the first time, identified two TEAD1 transcripts. Overexpressed transcripts TEAD1-V1 and TEAD1-V2 both inhibited the proliferation of chicken preadipocytes and promoted apoptosis of chicken preadipocytes. TEAD1-V1 inhibited the differentiation of preadipocytes and promoted the migration of preadipocytes, while TEAD1-V2 had no effect on the differentiation and migration of preadipocytes.
2.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
3.Cadmium promotes senescence of annulus fibrosus cells via activation of PI3K/Akt signaling pathway
Xin LIU ; Man HU ; Wenjie ZHAO ; Yu ZHANG ; Bo MENG ; Sheng YANG ; Qing PENG ; Liang ZHANG ; Jingcheng WANG
Chinese Journal of Tissue Engineering Research 2024;28(8):1217-1222
BACKGROUND:Cadmium is a common environmental pollutant,which can damage multiple organs and tissues,such as the kidney and bone,but its effect on annulus fibrosus cells in the intervertebral disc has been less reported. OBJECTIVE:To investigate the effect of cadmium chloride on the senescence of annulus fibrosus cells and the role of PI3K/Akt signaling pathway. METHODS:Annulus fibrosus cells from Sprague-Dawley rat intervertebral discs were harvested and passage 3 cells were intervened with different concentrations of cadmium chloride(0,1,5,10,20 μmol/L).Cell viability and proliferation were detected by cell counting kit-8 assay.Transcriptome sequencing and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis were performed on annulus fibrosus cells with or without cadmium chloride addition.Passage 3 annulus fibrosus cells were divided into control group,cadmium chloride group and LY294002 group.Cell proliferation rate was detected by EdU method,positive cell rate was detected by senescence-associated β-galactosidase staining,and expressions of senescence-associated proteins(p16,p21 and p53)and p-Akt at protein and mRNA levels were measured by western blot,RT-PCR and immunofluorescence. RESULTS AND CONCLUSION:5 μmol/L cadmium chloride could inhibit the proliferation of annulus fibrosus cells.Results from the Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis showed that the main signal transduction pathways included PI3K/Akt,cell cycle and p53 signaling pathways,which were related to cell senescence and proliferation.PI3K/Akt signaling pathways with significant differential expression were selected for validation.Compared with the control group,the EdU-positive rate was significantly decreased in the cadmium chloride group(P<0.05),while the β-galactosidase-positive rate,the expression of senescence-associated proteins(p16,p21 and p53)and p-Akt significantly increased(P<0.05).Compared with the cadmium chloride group,the EdU-positive rate and p-Akt expression were significantly decreased in the LY294002 group(P<0.05),while the β-galactosidase-positive rate and the expression of senescence-associated proteins(p16,p21 and p53)significantly increased(P<0.05).To conclude,cadmium chloride can regulate the senescence of annulus fibrosus cells by activating the PI3K/Akt signaling pathway,thereby inducing the occurrence and progression of intervertebral disc degeneration.
4.Efficacy evaluation of extending or switching to tenofovir amibufenamide in patients with chronic hepatitis B: a phase Ⅲ randomized controlled study
Zhihong LIU ; Qinglong JIN ; Yuexin ZHANG ; Guozhong GONG ; Guicheng WU ; Lvfeng YAO ; Xiaofeng WEN ; Zhiliang GAO ; Yan HUANG ; Daokun YANG ; Enqiang CHEN ; Qing MAO ; Shide LIN ; Jia SHANG ; Huanyu GONG ; Lihua ZHONG ; Huafa YIN ; Fengmei WANG ; Peng HU ; Xiaoqing ZHANG ; Qunjie GAO ; Chaonan JIN ; Chuan LI ; Junqi NIU ; Jinlin HOU
Chinese Journal of Hepatology 2024;32(10):883-892
Objective:In chronic hepatitis B (CHB) patients with previous 96-week treatment with tenofovir amibufenamide (TMF) or tenofovir disoproxil fumarate (TDF), we investigated the efficacy of sequential TMF treatment from 96 to 144 weeks.Methods:Enrolled subjects who were previously assigned (2:1) to receive either 25 mg TMF or 300 mg TDF with matching placebo for 96 weeks received extended or switched TMF treatment for 48 weeks. Efficacy was evaluated based on virological, serological, biological parameters, and fibrosis staging. Statistical analysis was performed using the McNemar test, t-test, or Log-Rank test according to the data. Results:593 subjects from the initial TMF group and 287 subjects from the TDF group were included at week 144, with the proportions of HBV DNA<20 IU/ml at week 144 being 86.2% and 83.3%, respectively, and 78.1% and 73.8% in patients with baseline HBV DNA levels ≥8 log10 IU/ml. Resistance to tenofovir was not detected in both groups. For HBeAg loss and seroconversion rates, both groups showed a further increase from week 96 to 144 and the 3-year cumulative rates of HBeAg loss were about 35% in each group. However, HBsAg levels were less affected during 96 to 144 weeks. For patients switched from TDF to TMF, a substantial further increase in the alanine aminotransferase (ALT) normalization rate was observed (11.4%), along with improved FIB-4 scores.Conclusion:After 144 weeks of TMF treatment, CHB patients achieved high rates of virological, serological, and biochemical responses, as well as improved liver fibrosis outcomes. Also, switching to TMF resulted in significant benefits in ALT normalization rates (NCT03903796).
5.Safety profile of tenofovir amibufenamide therapy extension or switching in patients with chronic hepatitis B: a phase Ⅲ multicenter, randomized controlled trial
Zhihong LIU ; Qinglong JIN ; Yuexin ZHANG ; Guozhong GONG ; Guicheng WU ; Lvfeng YAO ; Xiaofeng WEN ; Zhiliang GAO ; Yan HUANG ; Daokun YANG ; Enqiang CHEN ; Qing MAO ; Shide LIN ; Jia SHANG ; Huanyu GONG ; Lihua ZHONG ; Huafa YIN ; Fengmei WANG ; Peng HU ; Xiaoqing ZHANG ; Qunjie GAO ; Peng XIA ; Chuan LI ; Junqi NIU ; Jinlin HOU
Chinese Journal of Hepatology 2024;32(10):893-903
Objective:In chronic hepatitis B (CHB) patients with previous 96-week treatment with tenofovir amibufenamide (TMF) or tenofovir disoproxil fumarate (TDF), we investigated the safety profile of sequential TMF treatment from 96 to 144 weeks.Methods:Enrolled subjects that previously assigned (2:1) to receive either 25 mg TMF or 300 mg TDF with matching placebo for 96 weeks received extending or switching TMF treatment for 48 weeks. Safety profiles of kidney, bone, metabolism, body weight, and others were evaluated.Results:666 subjects from the initial TMF group and 336 subjects from TDF group with at least one dose of assigned treatment were included at week 144. The overall safety profile was favorable in each group and generally similar between extended or switched TMF treatments from week 96 to 144. In subjects switching from TDF to TMF, the non-indexed estimated glomerular filtration rate (by non-indexed CKD-EPI formula) and creatinine clearance (by Cockcroft-Gault formula) were both increased, which were (2.31±8.33) ml/min and (4.24±13.94) ml/min, respectively. These changes were also higher than those in subjects with extending TMF treatment [(0.91±8.06) ml/min and (1.30±13.94) ml/min]. Meanwhile, switching to TMF also led to an increase of the bone mineral density (BMD) by 0.75% in hip and 1.41% in spine. On the other side, a slight change in TC/HDL ratio by 0.16 (IQR: 0.00, 0.43) and an increase in body mass index (BMI) by (0.54±0.98) kg/m 2 were oberved with patients switched to TMF, which were significantly higher than that in TMF group. Conclusion:CHB patients receiving 144 weeks of TMF treatment showed favorable safety profile. After switching to TMF, the bone and renal safety was significantly improved in TDF group, though experienceing change in metabolic parameters and weight gain (NCT03903796).
6.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
7.Comparison of Clinical Characteristics of JAK2,CALR and Tri-Negative Driving Mutant Type in Patients with Essential Thrombocythemia
Yu-Meng LI ; Er-Peng YANG ; Zi-Qing WANG ; De-Hao WANG ; Ji-Cong NIU ; Yu-Jin LI ; Jing MING ; Ming-Qian SUN ; Zhuo CHEN ; Wei-Yi LIU ; Yan LYU ; Xiao-Mei HU
Journal of Experimental Hematology 2024;32(1):197-201
Objective:To investigate the relationship between mutated genes and clinical features in patients with essential thrombocythemia(ET).Methods:The clinical data of 69 patients with ET from October 2018 to March 2022 were retrospectively analyzed.According to driver mutation type,patients were divided into JAK2 group,CALR group and triple-negative group.The sex,age,cardiovascular risk factors,thrombosis,splenomegaly,routine blood test and coagulation status of patients in three groups were analyzed.Results:Among 69 ET patients,46 cases were associated with JAK2 mutation,14 cases with CALR mutation,8 cases with triple-negative mutation,and one with MPL gene mutation.There were no significant differences in age and sex among the three groups(P>0.05).The highest thrombotic rate was 26.09%(12/46)in JAK2 group,then 12.5%(1/8)in triple-negative group,while no thrombotic events occurred in CALR group.The incidence of splenomegaly was the highest in JAK2 group(34.78%),while no splenomegaly occurred in triple-negative group.The white blood cell(WBC)count in JAK2 group was(9.00±4.86)× 109/L,which was significantly higher than(6.03±2.32)× 109/L in CALR group(P<0.05).The hemoglobin(Hb)and hematocrit(HCT)in JAK2 group were(148.42±18.79)g/L and(0.44±0.06)%,respectively,which were both significantly higher than(131.00±15.17)g/L and(0.39±0.05)%in triple-negative group(P<0.05).The platelet(PLT)in JAK2 group was(584.17±175.77)× 109/L,which was significantly lower than(703.07±225.60)× 109/L in CALR group(P<0.05).The fibrinogen(Fg)in JAK2 and triple-negative group were(2.64±0.69)g/L and(3.05±0.77)g/L,respectively,which were both significantly higher than(2.24±0.47)g/L in CALR group(P<0.05,P<0.01).The activated partial thromboplastin time(APTT)in triple-negative group was(28.61±1.99)s,which was significantly decreased compared with(31.45±3.35)s in CALR group(P<0.05).Conclusions:There are differences in blood cell count and coagulation status among ET patients with different driver gene mutations.Among ET patients,JAK2 mutation is most common.Compared with CALR group,the thrombotic rate,WBC and Fg significantly increase in JAK2 group,while PLT decrease.Compared with triple-negative group,the incidence of splenomegaly and HCT significantly increase.Compared with CALR group,Fg significantly increases but APTT decreases in triple-negative group.
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
9.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
10.Clinical efficacy of repeated transcranial magnetic stimulation combined with acupuncture for chronic insomnia
Fenfen YAO ; Tao XU ; Hongling HU ; Jian CHEN ; Xiaoyan YOU ; Qing GUO ; Junyan CHEN ; Peng YU
China Modern Doctor 2024;62(27):12-16
Objective To explore the clinical efficacy of repeated transcranial magnetic stimulation(rTMS)and acupuncture therapy in the treatment of chronic insomnia disorder(CID)patients.Methods A total of 80 patients with CID,who were treated at Nanchang First Hospital from January 2022 to December 2023,were selected for the study.The patients were randomly divided into control group and treatment group,with 40 cases in each group.The control group patients were treated with dexmedetomidine,while the treatment group patients received rTMS and acupuncture therapy in addition to control group.The treatment course was 4 weeks,and the sleep quality,sleep related indicators,and psychological condition improvement of both groups of patients were observed before and after treatment.Results After treatment,the Pittsburgh sleep quality index scores of both groups of patients decreased(P<0.05);The sleep latency and number of awakenings were lower than before treatment(P<0.05),and the total sleep time,sleep efficiency,and proportion of rapid eye movement sleep were higher than before treatment,treatment group showed more significant improvement than control group(P<0.05).After treatment,the Hamilton anxiety and depression scale scores of both groups of patients decreased compared to before treatment,but there was no statistically significant difference in control group before and after treatment(P>0.05).However,there was a statistically significant difference in treatment group before and after treatment(P<0.05).Conclusion The combination of rTMS and acupuncture treatment can significantly improve the sleep quality of CID patients,while also reducing the accompanying symptoms of anxiety and depression.

Result Analysis
Print
Save
E-mail