1.The Research Progress on the Neural Interaction Mechanisms and Integrated Intervention Strategies of Chronic Pain and Negative Emotions
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(2):197-209
Chronic pain patients often experience varying degrees of negative emotions, such as anxiety and depression, and the persistent presence of these negative emotions may further exacerbate chronic pain. When treating chronic pain, improving either aspect of pain or negative emotions, the other symptom will also be alleviated. The brain regions involved in chronic pain and negative emotions partially overlap and share similar neurophysiological mechanisms, which may be one of the important reasons for their interaction. Multiple brain regions play synergistic roles in pain-related emotional, cognitive, and motivational processing, especially brain regions such as the amygdala, prefrontal cortex, nucleus accumbens, and ventral tegmental area in the cerebral cortex-limbic system, which are critical for the recognition and processing of emotional information. Currently, the clinical treatment of chronic pain remains challenging, especially the limitations of existing pharmacologic treatments. Therefore, benign regulation of negative emotions occupies an important place in the treatment of chronic pain as one of the important intervention targets. In this paper, on the basis of summarizing the neural mechanisms that generate negative emotions in chronic pain, a variety of current therapeutic options for chronic pain related negative emotions are summarize and organized, including pharmacotherapy, non-invasive neuromodulation, psychotherapy, and acupuncture. The combined application of these options not only helps to alleviate patients' negative emotions, but also provides more precise therapeutic targets and more effective strategies for future research. The aim of this article is to deepen beginners' understanding of the background of chronic pain pathophysiology and to provide a reference for clinical practice and research.
2.Efficacy of focal radiofrequency ablation in the treatment of low-to-intermediate risk localized prostate cancer
Shu GAO ; Zhen JIANG ; Jiyuan SUN ; Haifeng HUANG ; Qing ZHANG ; Hongqian GUO
Journal of Modern Urology 2025;30(2):143-147
Objective: To explore the efficacy of focal radiofrequency ablation (RFA) in the treatment of low-to-intermediate risk localized prostate cancer and its impact on postoperative urinary control and sexual function recovery,in order to explore the feasibility of minimally invasive methods for the treatment of localized prostate cancer. Methods: Clinical data of 28 patients with low-to-intermediate risk localized prostate cancer who underwent RFA in Nanjing Drum Tower Hospital,Affiliated Hospital of Medical School during Jun.2017 and Feb.2021 were retrospectively analyzed.The 5-year failure-free survival (FFS) rate,surgery related complications,postoperative urinary control and sexual function were collected.The differences between the survival curves of patients in the low-risk and intermediate-risk subgroups were assessed with log-rank test and Breslow test. Results: All surgeries were successfully completed under local anesthesia.During the median follow-up of 43 (40-49) months,the 5-year FFS rate predicted by Kaplan-Meier method was 78.57%; 25 patients (89.29%) did not experience surgery-related complications; 27 patients (96.43%) were able to control urination; 1 patient developed new-onset sexual dysfunction.There was no significant difference in the survival curves between patients in the low-risk and intermediate-risk groups (P>0.05). Conclusion: RFA for patients with low-to-intermediate risk localized prostate cancer has good clinical efficacy,little impact on urinary control and sexual function recovery,and few postoperative complications,which can be used as one of the treatment options for these patients.
3.The Application of Spatial Resolved Metabolomics in Neurodegenerative Diseases
Lu-Tao XU ; Qian LI ; Shu-Lei HAN ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2025;52(9):2346-2359
The pathogenesis of neurodegenerative diseases (NDDs) is fundamentally linked to complex and profound alterations in metabolic networks within the brain, which exhibit marked spatial heterogeneity. While conventional bulk metabolomics is powerful for detecting global metabolic shifts, it inherently lacks spatial resolution. This methodological limitation hampers the ability to interrogate critical metabolic dysregulation within discrete anatomical brain regions and specific cellular microenvironments, thereby constraining a deeper understanding of the core pathological mechanisms that initiate and drive NDDs. To address this critical gap, spatial metabolomics, with mass spectrometry imaging (MSI) at its core, has emerged as a transformative approach. It uniquely overcomes the limitations of bulk methods by enabling high-resolution, simultaneous detection and precise localization of hundreds to thousands of endogenous molecules—including primary metabolites, complex lipids, neurotransmitters, neuropeptides, and essential metal ions—directly in situ from tissue sections. This powerful capability offers an unprecedented spatial perspective for investigating the intricate and heterogeneous chemical landscape of NDD pathology, opening new avenues for discovery. Accordingly, this review provides a comprehensive overview of the field, beginning with a discussion of the technical features, optimal application scenarios, and current limitations of major MSI platforms. These include the widely adopted matrix-assisted laser desorption/ionization (MALDI)-MSI, the ultra-high-resolution technique of secondary ion mass spectrometry (SIMS)-MSI, and the ambient ionization method of desorption electrospray ionization (DESI)-MSI, along with other emerging technologies. We then highlight the pivotal applications of spatial metabolomics in NDD research, particularly its role in elucidating the profound chemical heterogeneity within distinct pathological microenvironments. These applications include mapping unique molecular signatures around amyloid β‑protein (Aβ) plaques, uncovering the metabolic consequences of neurofibrillary tangles composed of hyperphosphorylated tau protein, and characterizing the lipid and metabolite composition of Lewy bodies. Moreover, we examine how spatial metabolomics contributes to constructing detailed metabolic vulnerability maps across the brain, shedding light on the biochemical factors that render certain neuronal populations and anatomical regions selectively susceptible to degeneration while others remain resilient. Looking beyond current applications, we explore the immense potential of integrating spatial metabolomics with other advanced research methodologies. This includes its combination with three-dimensional brain organoid models to recapitulate disease-relevant metabolic processes, its linkage with multi-organ axis studies to investigate how systemic metabolic health influences neurodegeneration, and its convergence with single-cell and subcellular analyses to achieve unprecedented molecular resolution. In conclusion, this review not only summarizes the current state and critical role of spatial metabolomics in NDD research but also offers a forward-looking perspective on its transformative potential. We envision its continued impact in advancing our fundamental understanding of NDDs and accelerating translation into clinical practice—from the discovery of novel biomarkers for early diagnosis to the development of high-throughput drug screening platforms and the realization of precision medicine for individuals affected by these devastating disorders.
4.Research progress of traditional Chinese medicine regulating related signaling pathways to promote tendon-bone healing
Chaoqiang YANG ; Xiaomin WANG ; Liang WANG ; Yican WANG ; Tiantai KANG ; Qing YANG ; Hongxu SHU ; Yunyun YANG ; Hulin ZHANG
China Pharmacy 2024;35(6):767-772
Tendon-bone healing is a complex biological process. Multiple signaling pathways are involved in tendon-bone healing, including transforming growth factor-β signaling pathway, bone morphogenetic protein signaling pathway, Wnt signaling pathway, fibroblast growth factor signaling pathway and nuclear transcription factor-κB signaling pathway. This paper summarizes the research status of traditional Chinese medicine regulating related signaling pathways to promote tendon-bone healing. It is found that a variety of traditional Chinese medicine monomers or herbal extracts (such as baicalein, icariin, total flavonoids of Drynaria fortunei, parthenolide, total saponins of Panax notoginseng, etc.) and traditional Chinese medicine compounds (such as Taohong siwu decoction, Liuwei dihuang pill, Xujin jiegu liquid, etc.) can promote bone formation, anti-inflammatory, anti-oxidation, by regulating the above signaling pathways, thereby effectively promoting tendon-bone healing.
5.Anti-SARS-CoV-2 activity of small molecule inhibitors of cathepsin L
Wen-wen ZHOU ; Bao-qing YOU ; Yi-fan ZHENG ; Shu-yi SI ; Yan LI ; Jing ZHANG
Acta Pharmaceutica Sinica 2024;59(3):600-607
The coronavirus disease 2019 (COVID-19) is an acute infectious disease caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which has led to serious worldwide economic burden. Due to the continuous emergence of variants, vaccines and monoclonal antibodies are only partial effective against infections caused by distinct strains of SARS-CoV-2. Therefore, it is still of great importance to call for the development of broad-spectrum and effective small molecule drugs to combat both current and future outbreaks triggered by SARS-CoV-2. Cathepsin L (CatL) cleaves the spike glycoprotein (S) of SARS-CoV-2, playing an indispensable role in enhancing virus entry into host cells. Therefore CatL is one of the ideal targets for the development of pan-coronavirus inhibitor-based drugs. In this study, a CatL enzyme inhibitor screening model was established based on fluorescein labeled substrate. Two CatL inhibitors IMB 6290 and IMB 8014 with low cytotoxicity were obtained through high-throughput screening, the half inhibition concentrations (IC50) of which were 11.53 ± 0.68 and 1.56 ± 1.10 μmol·L-1, respectively. SDS-PAGE and cell-cell fusion experiments confirmed that the compounds inhibited the hydrolysis of S protein by CatL in a concentration-dependent manner. Surface plasmon resonance (SPR) detection showed that both compounds exhibited moderate binding affinity with CatL. Molecular docking revealed the binding mode between the compound and the CatL active pocket. The pseudovirus experiment further confirmed the inhibitory effects of IMB 8014 on the S protein mediated entry process.
6.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
7.ATPR alleviates lipopolysaccharide-induced acute liver injury in mice by promoting autophagy
Chuanlin SHU ; Xiaorui SHI ; Rumeng ZHU ; Qing ZHOU ; Yuan WANG ; Yi WANG ; Huaqing ZHU
Acta Universitatis Medicinalis Anhui 2024;59(2):200-206
Objective To investigate the effect of4-amino-2-trifluoromethyl-phenyl retinate(ATPR)on acute liver injury induced by lipopolysaccharide(LPS)in C57BL/6 mice and its related mechanism.Methods Fifteen 6-week-old male C57BL/6 strain mice were randomly divided into normal group,model group and ATPR group,with 5 mice in each group.Mice in the ATPR group were intraperitoneally injected with ATPR(15 mg/kg·d),and normal group and model group were given solvent.After continuous administration for one week,model group and ATPR group were intraperitoneally injected with LPS(6 mg/kg),and all mice were sacrificed 6 hours later.The contents of Alanine aminotransferase(ALT)and Aspartate aminotransferase(AST)in serum of mice were detec-ted.The mRNA levels of Interleukin-6(IL-6)and Tumor necrosis factor-alpha(TNF-α)were detected by qPCR.Hematoxylin-eosin(H&E)staining was used to observe the histopathological changes of liver in mice.The ultra-structural changes of mouse hepatocytes were observed by Transmission electron microscope(TEM).The expres-sion levels of mitochondrial damage-related proteins FUNDC1 and OPA1 and autophagy related proteins LC3B,P62,Beclin1 and ATG5 were detected by Western blot.Results Compared with the normal group,the content of ALT and AST in serum and the mRNA levels of IL-6 and TNF-α in liver tissue increased in the model group,and the changes were reversed in the ATPR group.H&E staining showed that the hepatic lobule structure was normal in the normal group,the hepatic cords were arranged radially,there was no hyperemia and inflammatory cell infiltra-tion,and the hepatocyte boundary was clear.In the model group,the intercellular space of liver was enlarged,the arrangement of hepatic cords was disordered,and inflammatory cells infiltrated.In the ATPR group,the intercellu-lar space of liver and the structure of hepatic cords were restored,and the inflammatory cell infiltration was less.TEM showed that the damaged mitochondria and lipid droplet accumulation in the hepatocytes of mice in the model group were compared with that in the normal group,and the morphology and quantity of mitochondria and lipid droplet in the hepatocytes of mice in the ATPR group tended to be normal.Western blot showed that compared with the normal group,the expression of FUNDC1 protein in the liver tissues of mice in the model group increased,the expression of OPA1 protein decreased,the ratio of LC3B Ⅱ to LC3B Ⅰ decreased,the expression of P62 protein in-creased,the expression of Beclin1 and ATG5 protein decreased,and the above changes were reversed in the ATPR group.Conclusion ATPR alleviates acute liver injury induced by lipopolysaccharide in mice by promoting autoph-agy.
8.Analysis of clinicopathological features, therapeutic efficacy, prognosis and mutation in 11 patients with cardiac diffuse large B-cell lymphoma
Na ZHAO ; Qing SHI ; Shu CHENG ; Li WANG ; Pengpeng XU ; Weili ZHAO
Journal of Leukemia & Lymphoma 2024;33(2):97-103
Objective:To investigate the clinicopathological features, mutation, therapeutic efficacy and the factors influencing the prognosis of patients with cardiac diffuse large B-cell lymphoma (DLBCL).Methods:A retrospective case series study was performed. The clinical data of 11 cardiac DLBCL patients in Ruijin Hospital of Shanghai Jiao Tong University School of Medicine from January 2016 to October 2020 were retrospectively analyzed. NovaSeq sequencing platform was used to detect gene mutations in 5 patients, and bioinformatics analysis of sequencing data was conducted through public database to identify the mutation sites of pathogenic genes. Kaplan-Meier method was used to analyze the progression-free survival (PFS) and the overall survival (OS). Univariate Cox proportional risk model was used to analyze the influencing factors of prognosis.Results:Among 11 patients with cardiac DLBCL, 5 were male and 6 were female. The age [ M ( Q1, Q3)] was 61 years (45 years, 70 years). All 11 patients were non-germinal center B-cell (non-GCB) type. There were 2 primary cases and 9 secondary cases; 9 cases with Ann Arbor stage of Ⅲ-Ⅳ, 10 cases with increased lactate dehydrogenase (LDH) and 9 cases with international prognostic index (IPI) score equal to or higher than 3 scores. Among 11 patients, 9 cases received a first-line treatment based on the R-CHOP (rituximab, cyclophosphamide, epirubicin/doxorubicin hydrochloride liposomes, vincristine and prednisone) regimen, of which 8 patients achieved complete remission (CR), and 1 patient achieved stable disease (SD); 1 patient received IR2 (ibrutinib + rituximab + lenalidomide) treatment regimen and achieved SD, and 1 patient received supportive treatment only and achieved progression of the disease. The follow-up time was 39.9 months (25.6 months, 57.3 months). The 3-year PFS rate and 3-year OS rate of 11 patients was 54.5%, 77.9 %, respectively. Univariate Cox regression analysis showed that gender, B symptoms, Ann Arbor stage, LDH level, number of extranodal lesions, IPI score were not correlated with PFS and OS of patients (all P > 0.05). Among 5 cases undergoing gene detection, KMT2D mutations and PIM1 mutations were detected in 2 cases,respectively. Interestingly, KMT2D mutations were only found in secondary cardiac DLBCL patients (2/3), while PIM1 mutations were only detected in primary cardiac DLBCL patients (2/2). Conclusions:Most cardiac DLBCL patients are non-GCB type and have advanced clinical stage, while may benefit from R-CHOP treatment regimen. PIM1 and KMT2D are the commonly mutated genes in cardiac DLBCL.
9.Zinc Oxide-Reduced Graphene Oxide-based Photoelectrochemical Sensor Combined with Molecularly Imprinting Technique for Sensitive Detection of Oxytetracycline
You-Yuan PENG ; Shu-Hong XU ; Qing-Hong PAN
Chinese Journal of Analytical Chemistry 2024;52(2):256-266
In this work,zinc oxide-reduced graphene oxide(ZnO-rGO)nanocomposites were fabricated using hydrothermal method,and the chemical and physical properties of the synthesized ZnO-rGO were characterized by several techniques,including X-ray diffraction and Fourier transform infrared(FT-IR)spectroscopy.A molecularly imprinted photoelectrochemical sensor based on ZnO-rGO was designed for sensitive detection of oxytetracycline(OTC).Polypyrrole(PPy)film was electropolymerized onto ZnO-rGO nanocomposites and OTC molecules were imprinted on the polymer film through hydrogen bonding.After OTC molecules were eluted,the recognition sites for OTC were left on the polymer membrane,enabling the specific detection of OTC.Linear detection of OTC was achieved in the range of 0.1-200 nmol/L with the detection limit of 0.05 nmol/L(S/N=3).The sensor was successfully applied to determination of OTC in milk and honey samples,with recoveries ranging from 95%to 107%.The developed method would provide significant reference value for effective and rapid detection of other antibiotics in the foods.
10.Data Mining of Medication Rules for the Treatment of Atopic Dermatitis the Children by Chinese Medical Master XUAN Guo-Wei
Jin-Dian DONG ; Cheng-Cheng GE ; Yue PEI ; Shu-Qing XIONG ; Jia-Fen LIANG ; Qin LIU ; Xiu-Mei MO ; Hong-Yi LI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):752-758
Objective Data mining technology was used to mine the medication rules of the prescriptions used in the treatment of pediatric atopic dermatitis by Chinese medical master XUAN Guo-Wei.Methods The medical records of effective cases of pediatric atopic dermatitis treated by Professor XUAN Guo-Wei at outpatient clinic were collected,and then the medical data were statistically analyzed using frequency statistics,association rule analysis and cluster analysis.Results A total of 242 prescriptions were included,involving 101 Chinese medicinals.There were 23 commonly-used herbs,and the 16 high-frequency herbs(frequency>100 times)were Glycyrrhizae Radix et Rhizoma,Saposhnikoviae Radix,Glehniae Radix,Perillae Folium,Ophiopogonis Radix,Cynanchi Paniculati Radix et Rhizoma,Microctis Folium,Dictamni Cortex,Scrophulariae Radix,Coicis Semen,Cicadae Periostracum,Lilii Bulbus,Rehmanniae Radix,Kochiae Fructus,Sclerotium Poriae Pararadicis,and Euryales Semen.The analysis of the medicinal properties showed that most of the herbs were sweet and cold,and mainly had the meridian tropism of the spleen,stomach and liver meridians.The association rule analysis yielded 24 commonly-used drug combinations and 20 association rules.Cluster analysis yielded 2 core drug combinations.Conclusion For the treatment of pediatric atopic dermatitis,Professor XUAN Guo-Wei focuses on the clearing,supplementing and harmonizing therapies,and the medication principle of"supporting the healthy-qi to eliminate the pathogen,and balancing the yin and yang"is applied throughout the treatment.

Result Analysis
Print
Save
E-mail