1.Applications of Vaterite in Drug Loading and Controlled Release
Xiao-Hui SONG ; Ming-Yu PAN ; Jian-Feng XU ; Zheng-Yu HUANG ; Qing PAN ; Qing-Ning LI
Progress in Biochemistry and Biophysics 2025;52(1):162-181
Currently, the drug delivery system (DDS) based on nanomaterials has become a hot interdisciplinary research topic. One of the core issues is drug loading and controlled release, in which the key lever is carriers. Vaterite, as an inorganic porous nano-material, is one metastable structure of calcium carbonate, full of micro or nano porous. Recently, vaterite has attracted more and more attention, due to its significant advantages, such as rich resources, easy preparations, low cost, simple loading procedures, good biocompatibility and many other good points. Vaterite, gained from suitable preparation strategies, can not only possess the good drug carrying performance, like high loading capacity and stable loading efficiency, but also improve the drug release ability, showing the better drug delivery effects, such as targeting release, pH sensitive release, photothermal controlled release, magnetic assistant release, optothermal controlled release. At the same time, the vaterite carriers, with good safety itself, can protect proteins, enzymes, or other drugs from degradation or inactivation, help imaging or visualization with loading fluorescent drugs in vitro and in vivo, and play synergistic effects with other therapy approaches, like photodynamic therapy, sonodynamic therapy, and thermochemotherapy. Latterly, some renewed reports in drug loading and controlled release have led to their widespread applications in diverse fields, from cell level to clinical studies. This review introduces the basic characteristics of vaterite and briefly summarizes its research history, followed by synthesis strategies. We subsequently highlight recent developments in drug loading and controlled release, with an emphasis on the advantages, quantity capacity, and comparations. Furthermore, new opportunities for using vaterite in cell level and animal level are detailed. Finally, the possible problems and development trends are discussed.
2.Discussion on the practice of ethical review in organ transplantation under refined management
Fang HUANG ; Xinfeng PAN ; Hui ZENG ; Qing HE ; Yong XU ; Lanlan WEI
Chinese Medical Ethics 2025;38(4):441-447
The development of organ transplantation has brought new hope to many patients with organ failure and their families, but it has also raised numerous ethical issues. How to balance the rights and interests between organ donors and recipients, as well as ensure the fairness and transparency of the transplantation process has become an urgent problem to be solved. Based on the latest Regulations on Organ Donation and Transplantation and the Working Rules of the Ethics Committee for Human Organ Transplantation, the current difficulties and challenges in organ transplantation ethics were deeply analyzed. Taking the ethical review practice of Shenzhen Third People’s Hospital as an example, this paper explored issues such as full informed consent of both donors and recipients, risk assessment of marginal donors, and the review of relationships between donors and recipients. It also explored and constructed a set of complete ethical review models for organ transplantation through refined management. This model improved the efficiency and quality of ethical review as well as enriched the related knowledge system. It is expected that the implementation of this model can provide a reference for promoting effective ethical review nationwide, advancing the improvement and development of ethical review work in organ transplantation. Meanwhile, more medical ethics experts and practitioners are called upon to focus on and engage in the research and practice of ethical review in organ transplantation, jointly promoting progress in this field.
3.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
4.Characteristic Expression of Multiple Neurotransmitters Oscillation Imbabance in Brains of 1 028 Patients with Depression
Anqi WANG ; Xuemei QING ; Yanshu PAN ; Pingfa ZHANG ; Ying ZHANG ; Jian LI ; Cheng ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):278-286
ObjectiveTo analyze the characteristic expression patterns of six neurotransmitters including 5-hydroxytryptamine (5-HT), dopamine (DA), acetylcholine (ACh), norepinephrine (NE), inhibitory neurotransmitter (INH), and excitatory neurotransmitter (EXC) in the whole brain and different brain regions of depression patients by Search of Encephalo Telex (SET), providing new ideas for the study of heterogeneous etiology of depression. Methods(1) A retrospective study was conducted on supra-slow signals of EEG fluctuations in 1 028 patients with depression. The SET system was used to obtain the expression information of six neurotransmitters in the whole brain and 12 brain regions: left frontal region (F3), right frontal region (F4), left central region (C3), right central region (C4), left parietal region (P3), right parietal region (P4), left occipital region (O1), right occipital region (O2), left anterior temporal region (F7), right anterior temporal region (F8), left posterior temporal region (T5), and right posterior temporal region (T6). The expression information of each neurotransmitter was compared with the normal model, and it was found that single neurotransmitter was in one of three states: increased, decreased, or normal expression. The simultaneous expression states of six neurotransmitters in the brain space were referred to as the expression pattern of multiple neurotransmitters. (2) A MySQL database was established to analyze the actual expression patterns of different neurotransmitters in the whole brain of patients with depression. (3) Factor analysis was conducted to further analyze the characteristic rules of 78 variables of neurotransmitters in the whole brain and 12 brain regions in depression patients. Results(1) The expression of single neurotransmitters in the whole brain and different brain regions of the total depression population showed one of three expression states (increased/decreased/normal), being normal in the majority. The decreased and increased expression of 5-HT, ACh, DA, INH, EXC, and NE in the whole brain occurred in 6% and 25%, 31% and 17%, 36% and 9%, 15% and 31%, 32% and 14%, and 22% and 22%, respectively. (2) The antagonizing pairs of neurotransmitters (EXC/INH, DA/5-HT, and ACh/NE) showed significant antagonistic relationships in the whole brain and different brain regions, with a strong negative correlation between EXC and INH (P<0.01, |r| values ranging from 0.69 to 0.76), a strong negative correlation between DA and 5-HT (P<0.01, |r| values ranging from 0.83 to 0.90), and a moderate negative correlation between ACh and NE (P<0.01, with |r| values ranging from 0.56 to 0.66). Meanwhile, non-antagonizing pairs of neurotransmitters in the whole brain and different brain regions also showed correlations, with DA/NE (P<0.01, |r| values ranging from 0.38 to 0.46) and NE/EXC (P<0.01, |r| values ranging from 0.56 to 0.61) showing weak and moderate negative correlations, respectively, and DA/EXC showing a weak positive correlation (P<0.01, |r| values ranging from 0.38 to 0.47). (3) The six neurotransmitters in the 1 028 patients with depression presented a total of 170 expression patterns in the whole brain. The top 30 expression patterns were reported in this paper, with a cumulative rate of 60.60%, including patterns ① INH+/5-HT-/ACh+/DA+/NE-/EXC- (9.05%), ② INH+/5-HT-/ACh↓/DA+/NE-/EXC- (4.57%), and ③ INH+/5-HT-/ACh+/DA+/NE↓/EXC- (3.31%). That is, the proportion of depression patients with normal levels of all the six neurotransmitters was 9.05%, and the patients with at least one neurotransmitter abnormality accounted for 91.95%. (4) The factor analysis extracted 22 common factors from 78 variables in the whole brain and different brain regions. These common factors showed the absolute values of loadings ranging from 0.32 to 0.86 and the eigenvalues (F) ranging from 1.03 to 13.43, with a cumulative contribution rate of 76.82%. The characteristic expression patterns included ① AChP3↓/AChW↓/AChC3↓/AChF3↓/AChO1↓/AChT5↓/AChF7↓/NEP3↑/NEW↑/NEC3↑/NEF3↑/NEO1↑/NET5↑/NEF7↑ (F=13.43, whole brain), ② 5-HTO2↑/DAO2↓/5-HTP4↑/DAP4↓/5-HTW↑/DAW↓/5-HTC4↑/DAC4↓ (F=5.94), and ③ EXCF4↓/DAF4↓/NEF4↑/INHF4↑/5-HTF4↑/AChF4↓ (F=5.33). ConclusionThe actual 170 expression patterns of 6 neurotransmitters in the whole brain of 1 028 depression patients indicate that depression is a heterogeneous disease with individualized characteristics. The 22 characteristic expression patterns in the whole brain and 12 brain regions verify the pathogenesis hypothesis of multi-neurotransmitters oscillation imbalance in brains of depression patients. In summary, this study provides new guidance for the etiology, diagnosis, and treatment of depression and establishes a methodological foundation for the effectiveness evaluation of individualized treatment of depression by traditional Chinese medicine based on the objective biological markers.
5.Characteristic Expression of Multiple Neurotransmitters Oscillation Imbabance in Brains of 1 028 Patients with Depression
Anqi WANG ; Xuemei QING ; Yanshu PAN ; Pingfa ZHANG ; Ying ZHANG ; Jian LI ; Cheng ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):278-286
ObjectiveTo analyze the characteristic expression patterns of six neurotransmitters including 5-hydroxytryptamine (5-HT), dopamine (DA), acetylcholine (ACh), norepinephrine (NE), inhibitory neurotransmitter (INH), and excitatory neurotransmitter (EXC) in the whole brain and different brain regions of depression patients by Search of Encephalo Telex (SET), providing new ideas for the study of heterogeneous etiology of depression. Methods(1) A retrospective study was conducted on supra-slow signals of EEG fluctuations in 1 028 patients with depression. The SET system was used to obtain the expression information of six neurotransmitters in the whole brain and 12 brain regions: left frontal region (F3), right frontal region (F4), left central region (C3), right central region (C4), left parietal region (P3), right parietal region (P4), left occipital region (O1), right occipital region (O2), left anterior temporal region (F7), right anterior temporal region (F8), left posterior temporal region (T5), and right posterior temporal region (T6). The expression information of each neurotransmitter was compared with the normal model, and it was found that single neurotransmitter was in one of three states: increased, decreased, or normal expression. The simultaneous expression states of six neurotransmitters in the brain space were referred to as the expression pattern of multiple neurotransmitters. (2) A MySQL database was established to analyze the actual expression patterns of different neurotransmitters in the whole brain of patients with depression. (3) Factor analysis was conducted to further analyze the characteristic rules of 78 variables of neurotransmitters in the whole brain and 12 brain regions in depression patients. Results(1) The expression of single neurotransmitters in the whole brain and different brain regions of the total depression population showed one of three expression states (increased/decreased/normal), being normal in the majority. The decreased and increased expression of 5-HT, ACh, DA, INH, EXC, and NE in the whole brain occurred in 6% and 25%, 31% and 17%, 36% and 9%, 15% and 31%, 32% and 14%, and 22% and 22%, respectively. (2) The antagonizing pairs of neurotransmitters (EXC/INH, DA/5-HT, and ACh/NE) showed significant antagonistic relationships in the whole brain and different brain regions, with a strong negative correlation between EXC and INH (P<0.01, |r| values ranging from 0.69 to 0.76), a strong negative correlation between DA and 5-HT (P<0.01, |r| values ranging from 0.83 to 0.90), and a moderate negative correlation between ACh and NE (P<0.01, with |r| values ranging from 0.56 to 0.66). Meanwhile, non-antagonizing pairs of neurotransmitters in the whole brain and different brain regions also showed correlations, with DA/NE (P<0.01, |r| values ranging from 0.38 to 0.46) and NE/EXC (P<0.01, |r| values ranging from 0.56 to 0.61) showing weak and moderate negative correlations, respectively, and DA/EXC showing a weak positive correlation (P<0.01, |r| values ranging from 0.38 to 0.47). (3) The six neurotransmitters in the 1 028 patients with depression presented a total of 170 expression patterns in the whole brain. The top 30 expression patterns were reported in this paper, with a cumulative rate of 60.60%, including patterns ① INH+/5-HT-/ACh+/DA+/NE-/EXC- (9.05%), ② INH+/5-HT-/ACh↓/DA+/NE-/EXC- (4.57%), and ③ INH+/5-HT-/ACh+/DA+/NE↓/EXC- (3.31%). That is, the proportion of depression patients with normal levels of all the six neurotransmitters was 9.05%, and the patients with at least one neurotransmitter abnormality accounted for 91.95%. (4) The factor analysis extracted 22 common factors from 78 variables in the whole brain and different brain regions. These common factors showed the absolute values of loadings ranging from 0.32 to 0.86 and the eigenvalues (F) ranging from 1.03 to 13.43, with a cumulative contribution rate of 76.82%. The characteristic expression patterns included ① AChP3↓/AChW↓/AChC3↓/AChF3↓/AChO1↓/AChT5↓/AChF7↓/NEP3↑/NEW↑/NEC3↑/NEF3↑/NEO1↑/NET5↑/NEF7↑ (F=13.43, whole brain), ② 5-HTO2↑/DAO2↓/5-HTP4↑/DAP4↓/5-HTW↑/DAW↓/5-HTC4↑/DAC4↓ (F=5.94), and ③ EXCF4↓/DAF4↓/NEF4↑/INHF4↑/5-HTF4↑/AChF4↓ (F=5.33). ConclusionThe actual 170 expression patterns of 6 neurotransmitters in the whole brain of 1 028 depression patients indicate that depression is a heterogeneous disease with individualized characteristics. The 22 characteristic expression patterns in the whole brain and 12 brain regions verify the pathogenesis hypothesis of multi-neurotransmitters oscillation imbalance in brains of depression patients. In summary, this study provides new guidance for the etiology, diagnosis, and treatment of depression and establishes a methodological foundation for the effectiveness evaluation of individualized treatment of depression by traditional Chinese medicine based on the objective biological markers.
6.A Single-Arm Phase II Clinical Trial of Fulvestrant Combined with Neoadjuvant Chemotherapy of ER+/HER2– Locally Advanced Breast Cancer: Integrated Analysis of 18F-FES PET-CT and Metabolites with Treatment Response
Qing SHAO ; Ningning ZHANG ; Xianjun PAN ; Wenqi ZHOU ; Yali WANG ; Xiaoliang CHEN ; Jing WU ; Xiaohua ZENG
Cancer Research and Treatment 2025;57(1):126-139
Purpose:
This Phase II trial was objected to evaluate the efficacy and safety of adding fulvestrant to neoadjuvant chemotherapy in patients with estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)– locally advanced breast cancer (LABC). Additionally, the study aimed to investigate the association of 16α-18F-fluoro-17β-fluoroestradiol (18F-FES) positron emission tomography (PET)–computed tomography (CT) and metabolites with efficacy.
Materials and Methods:
Fulvestrant and EC-T regimen were given to ER+/HER2– LABC patients before surgery. At baseline, patients received 18F-FES PET-CT scan, and plasma samples were taken for liquid chromatography–mass spectrometry analysis. The primary endpoint was objective response rate (ORR). Secondary endpoints included total pathologic complete response (tpCR) and safety.
Results:
Among the 36 patients enrolled, the ORR was 86.1%, the tpCR rate was 8.3%. The incidence of grade ≥ 3 treatment-emergent adverse events was 22%. The decrease in ER value in sensitive patients was larger than that in non-sensitive patients, as was Ki-67 (p < 0.05). The maximum standardized uptake value, mean standardized uptake values, total lesion ER expression of 18F-FES PET-CT in sensitive patients were significantly higher than those in non-sensitive patients (p < 0.05). Moreover, these parameters were significantly correlated with Miller and Payne grade and the change in ER expression before and after treatment (p < 0.05). Thirteen differential expressed metabolites were identified, which were markedly enriched in 19 metabolic pathways.
Conclusion
This regimen demonstrated acceptable toxicity and encouraging antitumor efficacy. 18F-FES PET-CT might serve as a tool to predict the effectiveness of this therapy. Altered metabolites or metabolic pathways might be associated with treatment response.
7.A Single-Arm Phase II Clinical Trial of Fulvestrant Combined with Neoadjuvant Chemotherapy of ER+/HER2– Locally Advanced Breast Cancer: Integrated Analysis of 18F-FES PET-CT and Metabolites with Treatment Response
Qing SHAO ; Ningning ZHANG ; Xianjun PAN ; Wenqi ZHOU ; Yali WANG ; Xiaoliang CHEN ; Jing WU ; Xiaohua ZENG
Cancer Research and Treatment 2025;57(1):126-139
Purpose:
This Phase II trial was objected to evaluate the efficacy and safety of adding fulvestrant to neoadjuvant chemotherapy in patients with estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)– locally advanced breast cancer (LABC). Additionally, the study aimed to investigate the association of 16α-18F-fluoro-17β-fluoroestradiol (18F-FES) positron emission tomography (PET)–computed tomography (CT) and metabolites with efficacy.
Materials and Methods:
Fulvestrant and EC-T regimen were given to ER+/HER2– LABC patients before surgery. At baseline, patients received 18F-FES PET-CT scan, and plasma samples were taken for liquid chromatography–mass spectrometry analysis. The primary endpoint was objective response rate (ORR). Secondary endpoints included total pathologic complete response (tpCR) and safety.
Results:
Among the 36 patients enrolled, the ORR was 86.1%, the tpCR rate was 8.3%. The incidence of grade ≥ 3 treatment-emergent adverse events was 22%. The decrease in ER value in sensitive patients was larger than that in non-sensitive patients, as was Ki-67 (p < 0.05). The maximum standardized uptake value, mean standardized uptake values, total lesion ER expression of 18F-FES PET-CT in sensitive patients were significantly higher than those in non-sensitive patients (p < 0.05). Moreover, these parameters were significantly correlated with Miller and Payne grade and the change in ER expression before and after treatment (p < 0.05). Thirteen differential expressed metabolites were identified, which were markedly enriched in 19 metabolic pathways.
Conclusion
This regimen demonstrated acceptable toxicity and encouraging antitumor efficacy. 18F-FES PET-CT might serve as a tool to predict the effectiveness of this therapy. Altered metabolites or metabolic pathways might be associated with treatment response.
8.A Single-Arm Phase II Clinical Trial of Fulvestrant Combined with Neoadjuvant Chemotherapy of ER+/HER2– Locally Advanced Breast Cancer: Integrated Analysis of 18F-FES PET-CT and Metabolites with Treatment Response
Qing SHAO ; Ningning ZHANG ; Xianjun PAN ; Wenqi ZHOU ; Yali WANG ; Xiaoliang CHEN ; Jing WU ; Xiaohua ZENG
Cancer Research and Treatment 2025;57(1):126-139
Purpose:
This Phase II trial was objected to evaluate the efficacy and safety of adding fulvestrant to neoadjuvant chemotherapy in patients with estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)– locally advanced breast cancer (LABC). Additionally, the study aimed to investigate the association of 16α-18F-fluoro-17β-fluoroestradiol (18F-FES) positron emission tomography (PET)–computed tomography (CT) and metabolites with efficacy.
Materials and Methods:
Fulvestrant and EC-T regimen were given to ER+/HER2– LABC patients before surgery. At baseline, patients received 18F-FES PET-CT scan, and plasma samples were taken for liquid chromatography–mass spectrometry analysis. The primary endpoint was objective response rate (ORR). Secondary endpoints included total pathologic complete response (tpCR) and safety.
Results:
Among the 36 patients enrolled, the ORR was 86.1%, the tpCR rate was 8.3%. The incidence of grade ≥ 3 treatment-emergent adverse events was 22%. The decrease in ER value in sensitive patients was larger than that in non-sensitive patients, as was Ki-67 (p < 0.05). The maximum standardized uptake value, mean standardized uptake values, total lesion ER expression of 18F-FES PET-CT in sensitive patients were significantly higher than those in non-sensitive patients (p < 0.05). Moreover, these parameters were significantly correlated with Miller and Payne grade and the change in ER expression before and after treatment (p < 0.05). Thirteen differential expressed metabolites were identified, which were markedly enriched in 19 metabolic pathways.
Conclusion
This regimen demonstrated acceptable toxicity and encouraging antitumor efficacy. 18F-FES PET-CT might serve as a tool to predict the effectiveness of this therapy. Altered metabolites or metabolic pathways might be associated with treatment response.
9.Prevalence and influencing factors of overweight and obesity among primary school students in a community of Fengxian District, Shanghai, 2023
Xinxing ZHANG ; Qing LIU ; Ying WU ; Wanhong HE ; Chunlei PAN
Shanghai Journal of Preventive Medicine 2025;37(8):687-691
ObjectiveTo analyze the prevalence and influencing factors of overweight and obesity among primary school students in a community of Fengxian District, Shanghai, and to provide references for formulating prevention and control strategies against overweight and obesity. MethodsData on height and weight of all primary school students in a community in Fengxian District, Shanghai, in 2023 were obtained by physical examination, and 1 759 primary school students were included according to the entry criteria. Overweight and obesity were determined using body mass index (BMI). Additionally, a questionnaire survey was performed to 1 045 students to collect their demographic characteristics, dietary behaviors, dietary habits, sleep and physical activity information. Chi-square test and logistic regression analysis were used to analyze the influencing factors of overweight and obesity. ResultsIn 2023, among the 1 759 primary school students in the community in Fengxian District, 923 (52.47%) were male and 836 (47.53%) were female, with an overweight/obesity detection rate of 28.08%. The detection rate of overweight and obesity was 33.37% in males and 22.25% in females, which was significantly higher in males than that in females (χ2=26.845, P<0.001). Students aged 10‒12 years had a higher overweight/obesity detection rate (32.55%) than those aged 6‒<10 years (26.53%), and the difference was statistically significant (χ2=10.925, P<0.001). Logistic regression analysis revealed that being female, with young age, parental education level of bachelor’s degree and above, a high global dietary recommendation healthy (GDR-healthy) score, preference for vegetables and sweeter home-cooked meals, and a slow eating speed were negatively correlated with overweight/obesity. Whereas, parental overweight and obesity, binge eating, and a faster eating pace than same-age, same-gender peers may be positively correlated with overweight/obesity. ConclusionThe detection rate of overweight and obesity among primary school students in the community in Fengxian District of Shanghai is higher than the national level. Gender, age, parental BMI, parental education level, dietary behaviors and habits are the main influencing factors of overweight/obesity among primary school students.
10.Optimization of salt-processing technology for Anemarrhena asphodeloides by Box-Behnken response surface methodology versus GA-BP neural network
Luoxing PAN ; Yiman ZHAO ; Hui YUAN ; Zehua LI ; Dongsheng XUE ; Qing ZHAO
China Pharmacy 2025;36(19):2399-2403
OBJECTIVE To optimize the salt-processing technology for Anemarrhena asphodeloides. METHODS Taking soaking time, stir-frying temperature, and stir-frying time as factors, Box-Behnken response surface methodology was employed to optimize the salt-processing technology of A. asphodeloides using the contents of mangiferin, neomangiferin, isomangiferin, timosaponin BⅡ, timosaponin AⅢ, timosaponin BⅢ, total flavonoids, and total saponins as evaluation indicators. The entropy weight method was applied to determine the weight of each indicator and calculate the comprehensive score. Based on the 17 sets of Box-Behnken response surface methodology results, a genetic algorithm (GA)-back propagation (BP) neural network was used to further optimize the salt-processing technology, with soaking time, stir-frying temperature, and stir-frying time as input layers and the comprehensive score as the output layer. The salt-processing parameters obtained from the two methods were validated and compared to determine the optimal salt-processing technology for A. asphodeloides. RESULTS The optimal salt-processing conditions obtained via the Box-Behnken response surface methodology were as follows: soaking time of 23 min, stir-frying temperature of 160 ℃ , and stir-frying time of 12 min, yielding a comprehensive score of 63.370 2. The GA-BP neural network optimization resulted in the following conditions: soaking time of 24 min, stir-frying temperature of 163 ℃, and stir-frying time of 12 min, with a comprehensive score of 65.163 8. The GA-BP neural network optimization outperformed the results obtained by Box-Behnken response surface methodology. CONCLUSIONS This study successfully optimized the salt-processing technology for A. asphodeloides. Specifically, the technology involves adding 15 mL of 0.1 g/mL saline solution to 50 g of the herbal slices, allowing them to moisten for 24 minutes, and then stir-frying at 163 ℃ for 12 minutes.

Result Analysis
Print
Save
E-mail