1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
3.Characteristic Expression of Multiple Neurotransmitters Oscillation Imbabance in Brains of 1 028 Patients with Depression
Anqi WANG ; Xuemei QING ; Yanshu PAN ; Pingfa ZHANG ; Ying ZHANG ; Jian LI ; Cheng ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):278-286
ObjectiveTo analyze the characteristic expression patterns of six neurotransmitters including 5-hydroxytryptamine (5-HT), dopamine (DA), acetylcholine (ACh), norepinephrine (NE), inhibitory neurotransmitter (INH), and excitatory neurotransmitter (EXC) in the whole brain and different brain regions of depression patients by Search of Encephalo Telex (SET), providing new ideas for the study of heterogeneous etiology of depression. Methods(1) A retrospective study was conducted on supra-slow signals of EEG fluctuations in 1 028 patients with depression. The SET system was used to obtain the expression information of six neurotransmitters in the whole brain and 12 brain regions: left frontal region (F3), right frontal region (F4), left central region (C3), right central region (C4), left parietal region (P3), right parietal region (P4), left occipital region (O1), right occipital region (O2), left anterior temporal region (F7), right anterior temporal region (F8), left posterior temporal region (T5), and right posterior temporal region (T6). The expression information of each neurotransmitter was compared with the normal model, and it was found that single neurotransmitter was in one of three states: increased, decreased, or normal expression. The simultaneous expression states of six neurotransmitters in the brain space were referred to as the expression pattern of multiple neurotransmitters. (2) A MySQL database was established to analyze the actual expression patterns of different neurotransmitters in the whole brain of patients with depression. (3) Factor analysis was conducted to further analyze the characteristic rules of 78 variables of neurotransmitters in the whole brain and 12 brain regions in depression patients. Results(1) The expression of single neurotransmitters in the whole brain and different brain regions of the total depression population showed one of three expression states (increased/decreased/normal), being normal in the majority. The decreased and increased expression of 5-HT, ACh, DA, INH, EXC, and NE in the whole brain occurred in 6% and 25%, 31% and 17%, 36% and 9%, 15% and 31%, 32% and 14%, and 22% and 22%, respectively. (2) The antagonizing pairs of neurotransmitters (EXC/INH, DA/5-HT, and ACh/NE) showed significant antagonistic relationships in the whole brain and different brain regions, with a strong negative correlation between EXC and INH (P<0.01, |r| values ranging from 0.69 to 0.76), a strong negative correlation between DA and 5-HT (P<0.01, |r| values ranging from 0.83 to 0.90), and a moderate negative correlation between ACh and NE (P<0.01, with |r| values ranging from 0.56 to 0.66). Meanwhile, non-antagonizing pairs of neurotransmitters in the whole brain and different brain regions also showed correlations, with DA/NE (P<0.01, |r| values ranging from 0.38 to 0.46) and NE/EXC (P<0.01, |r| values ranging from 0.56 to 0.61) showing weak and moderate negative correlations, respectively, and DA/EXC showing a weak positive correlation (P<0.01, |r| values ranging from 0.38 to 0.47). (3) The six neurotransmitters in the 1 028 patients with depression presented a total of 170 expression patterns in the whole brain. The top 30 expression patterns were reported in this paper, with a cumulative rate of 60.60%, including patterns ① INH+/5-HT-/ACh+/DA+/NE-/EXC- (9.05%), ② INH+/5-HT-/ACh↓/DA+/NE-/EXC- (4.57%), and ③ INH+/5-HT-/ACh+/DA+/NE↓/EXC- (3.31%). That is, the proportion of depression patients with normal levels of all the six neurotransmitters was 9.05%, and the patients with at least one neurotransmitter abnormality accounted for 91.95%. (4) The factor analysis extracted 22 common factors from 78 variables in the whole brain and different brain regions. These common factors showed the absolute values of loadings ranging from 0.32 to 0.86 and the eigenvalues (F) ranging from 1.03 to 13.43, with a cumulative contribution rate of 76.82%. The characteristic expression patterns included ① AChP3↓/AChW↓/AChC3↓/AChF3↓/AChO1↓/AChT5↓/AChF7↓/NEP3↑/NEW↑/NEC3↑/NEF3↑/NEO1↑/NET5↑/NEF7↑ (F=13.43, whole brain), ② 5-HTO2↑/DAO2↓/5-HTP4↑/DAP4↓/5-HTW↑/DAW↓/5-HTC4↑/DAC4↓ (F=5.94), and ③ EXCF4↓/DAF4↓/NEF4↑/INHF4↑/5-HTF4↑/AChF4↓ (F=5.33). ConclusionThe actual 170 expression patterns of 6 neurotransmitters in the whole brain of 1 028 depression patients indicate that depression is a heterogeneous disease with individualized characteristics. The 22 characteristic expression patterns in the whole brain and 12 brain regions verify the pathogenesis hypothesis of multi-neurotransmitters oscillation imbalance in brains of depression patients. In summary, this study provides new guidance for the etiology, diagnosis, and treatment of depression and establishes a methodological foundation for the effectiveness evaluation of individualized treatment of depression by traditional Chinese medicine based on the objective biological markers.
4.Characteristic Expression of Multiple Neurotransmitters Oscillation Imbabance in Brains of 1 028 Patients with Depression
Anqi WANG ; Xuemei QING ; Yanshu PAN ; Pingfa ZHANG ; Ying ZHANG ; Jian LI ; Cheng ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):278-286
ObjectiveTo analyze the characteristic expression patterns of six neurotransmitters including 5-hydroxytryptamine (5-HT), dopamine (DA), acetylcholine (ACh), norepinephrine (NE), inhibitory neurotransmitter (INH), and excitatory neurotransmitter (EXC) in the whole brain and different brain regions of depression patients by Search of Encephalo Telex (SET), providing new ideas for the study of heterogeneous etiology of depression. Methods(1) A retrospective study was conducted on supra-slow signals of EEG fluctuations in 1 028 patients with depression. The SET system was used to obtain the expression information of six neurotransmitters in the whole brain and 12 brain regions: left frontal region (F3), right frontal region (F4), left central region (C3), right central region (C4), left parietal region (P3), right parietal region (P4), left occipital region (O1), right occipital region (O2), left anterior temporal region (F7), right anterior temporal region (F8), left posterior temporal region (T5), and right posterior temporal region (T6). The expression information of each neurotransmitter was compared with the normal model, and it was found that single neurotransmitter was in one of three states: increased, decreased, or normal expression. The simultaneous expression states of six neurotransmitters in the brain space were referred to as the expression pattern of multiple neurotransmitters. (2) A MySQL database was established to analyze the actual expression patterns of different neurotransmitters in the whole brain of patients with depression. (3) Factor analysis was conducted to further analyze the characteristic rules of 78 variables of neurotransmitters in the whole brain and 12 brain regions in depression patients. Results(1) The expression of single neurotransmitters in the whole brain and different brain regions of the total depression population showed one of three expression states (increased/decreased/normal), being normal in the majority. The decreased and increased expression of 5-HT, ACh, DA, INH, EXC, and NE in the whole brain occurred in 6% and 25%, 31% and 17%, 36% and 9%, 15% and 31%, 32% and 14%, and 22% and 22%, respectively. (2) The antagonizing pairs of neurotransmitters (EXC/INH, DA/5-HT, and ACh/NE) showed significant antagonistic relationships in the whole brain and different brain regions, with a strong negative correlation between EXC and INH (P<0.01, |r| values ranging from 0.69 to 0.76), a strong negative correlation between DA and 5-HT (P<0.01, |r| values ranging from 0.83 to 0.90), and a moderate negative correlation between ACh and NE (P<0.01, with |r| values ranging from 0.56 to 0.66). Meanwhile, non-antagonizing pairs of neurotransmitters in the whole brain and different brain regions also showed correlations, with DA/NE (P<0.01, |r| values ranging from 0.38 to 0.46) and NE/EXC (P<0.01, |r| values ranging from 0.56 to 0.61) showing weak and moderate negative correlations, respectively, and DA/EXC showing a weak positive correlation (P<0.01, |r| values ranging from 0.38 to 0.47). (3) The six neurotransmitters in the 1 028 patients with depression presented a total of 170 expression patterns in the whole brain. The top 30 expression patterns were reported in this paper, with a cumulative rate of 60.60%, including patterns ① INH+/5-HT-/ACh+/DA+/NE-/EXC- (9.05%), ② INH+/5-HT-/ACh↓/DA+/NE-/EXC- (4.57%), and ③ INH+/5-HT-/ACh+/DA+/NE↓/EXC- (3.31%). That is, the proportion of depression patients with normal levels of all the six neurotransmitters was 9.05%, and the patients with at least one neurotransmitter abnormality accounted for 91.95%. (4) The factor analysis extracted 22 common factors from 78 variables in the whole brain and different brain regions. These common factors showed the absolute values of loadings ranging from 0.32 to 0.86 and the eigenvalues (F) ranging from 1.03 to 13.43, with a cumulative contribution rate of 76.82%. The characteristic expression patterns included ① AChP3↓/AChW↓/AChC3↓/AChF3↓/AChO1↓/AChT5↓/AChF7↓/NEP3↑/NEW↑/NEC3↑/NEF3↑/NEO1↑/NET5↑/NEF7↑ (F=13.43, whole brain), ② 5-HTO2↑/DAO2↓/5-HTP4↑/DAP4↓/5-HTW↑/DAW↓/5-HTC4↑/DAC4↓ (F=5.94), and ③ EXCF4↓/DAF4↓/NEF4↑/INHF4↑/5-HTF4↑/AChF4↓ (F=5.33). ConclusionThe actual 170 expression patterns of 6 neurotransmitters in the whole brain of 1 028 depression patients indicate that depression is a heterogeneous disease with individualized characteristics. The 22 characteristic expression patterns in the whole brain and 12 brain regions verify the pathogenesis hypothesis of multi-neurotransmitters oscillation imbalance in brains of depression patients. In summary, this study provides new guidance for the etiology, diagnosis, and treatment of depression and establishes a methodological foundation for the effectiveness evaluation of individualized treatment of depression by traditional Chinese medicine based on the objective biological markers.
5.Hyperoside Alleviates LPS-induced Inflammation in Zebrafish Model via TLR4/MyD88/NF-κB Pathway
Qing LAN ; Anna WANG ; Feifei ZHOU ; Keqian LIU ; Zhao LI ; Wenjing YU ; Shuyao TANG ; Ping LI ; Shaowu CHENG ; Sisi DENG ; Zhenyan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):63-72
ObjectiveTo investigate the intervention effects and mechanisms of the flavonoid hyperoside (Hyp) on lipopolysaccharide (LPS)-induced inflammation in the zebrafish model. MethodsZebrafish larvae were either microinjected with 0.5 g·L-1 LPS or immersed in 1 g·L-1 LPS for the modeling of inflammation. The larvae were then treated with Hyp at 25, 50, and 100 mg·L-1 through immersion for four consecutive days. The inflammatory phenotypes were assessed by analyzing the mortality rate, malformation rate, body length, and yolk sac area ratio. Behavioral tests were conducted to evaluate the inflammatory stress responses, and macrophage migration was observed by fluorescence microscopy. Additionally, the mRNA levels of inflammation-related genes, including interleukin-1β (IL-1β), interleukin-6 (IL-6), chemokine C-C motif ligand 2 (CCL2), chemokine C-X3-C motif receptor 1 (CX3CR1), chemokine C-C motif receptor 2 (CCR2), and genes associated with the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-kappa B (NF-κB) signaling pathway, were measured by Real-time quantitative polymerase chain reaction(Real-time PCR). ResultsCompared with the pure water injection group, the model group exhibited increased mortality, malformation rates and yolk sac area ratio (P0.01), reduced body length (P0.01), increased total swimming distance and high-speed swimming duration (P0.01), and up-regulated mRNA levels of TLR4, MyD88, NF-κB, IL-1β, IL-6, CCL2, CX3CR1, and CCR2 (P0.01). Hyp at low, medium and high doses, as well as aspirin, reduced the mortality and malformation rates (P0.05,P0.01), increased the body length (P0.05,P0.01), decreased the yolk sac area ratio (P0.01), reduced the high-speed swimming duration (P0.01), and down-regulated the mRNA levels of TLR4, MyD88, NF-κB, IL-1β, IL-6, CCL2, CX3CR1, and CCR2 (P0.05,P0.01) compared with the model group. ConclusionHyp may modulate the TLR4/MyD88/NF-κB pathway to ameliorate inflammatory phenotypes and alleviate stress conditions in zebrafish, thereby exerting the anti-inflammatory effect.
6.Therapeutic role of miR-26a on cardiorenal injury in a mice model of angiotensin-II induced chronic kidney disease through inhibition of LIMS1/ILK pathway.
Weijie NI ; Yajie ZHAO ; Jinxin SHEN ; Qing YIN ; Yao WANG ; Zuolin LI ; Taotao TANG ; Yi WEN ; Yilin ZHANG ; Wei JIANG ; Liangyunzi JIANG ; Jinxuan WEI ; Weihua GAN ; Aiqing ZHANG ; Xiaoyu ZHOU ; Bin WANG ; Bi-Cheng LIU
Chinese Medical Journal 2025;138(2):193-204
BACKGROUND:
Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD.
METHODS:
We generated an microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t -test were used to analyze the data.
RESULTS:
Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes.
CONCLUSIONS
Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.
Animals
;
MicroRNAs/metabolism*
;
Angiotensin II/toxicity*
;
Mice
;
Renal Insufficiency, Chronic/chemically induced*
;
Mice, Knockout
;
Disease Models, Animal
;
Male
;
Signal Transduction/genetics*
;
LIM Domain Proteins/genetics*
;
Mice, Inbred C57BL
;
Cell Line
;
Humans
7.Association of NLRP3 genetic variant rs10754555 with early-onset coronary artery disease.
Lingfeng ZHA ; Chengqi XU ; Mengqi WANG ; Shaofang NIE ; Miao YU ; Jiangtao DONG ; Qianwen CHEN ; Tian XIE ; Meilin LIU ; Fen YANG ; Zhengfeng ZHU ; Xin TU ; Qing K WANG ; Zhilei SHAN ; Xiang CHENG
Chinese Medical Journal 2025;138(21):2844-2846
8.Randomized, double-blind, parallel-controlled, multicenter, equivalence clinical trial of Jiuwei Xifeng Granules(Os Draconis replaced by Ostreae Concha) for treating tic disorder in children.
Qiu-Han CAI ; Cheng-Liang ZHONG ; Si-Yuan HU ; Xin-Min LI ; Zhi-Chun XU ; Hui CHEN ; Ying HUA ; Jun-Hong WANG ; Ji-Hong TANG ; Bing-Xiang MA ; Xiu-Xia WANG ; Ai-Zhen WANG ; Meng-Qing WANG ; Wei ZHANG ; Chun WANG ; Yi-Qun TENG ; Yi-Hui SHAN ; Sheng-Xuan GUO
China Journal of Chinese Materia Medica 2025;50(6):1699-1705
Jiuwei Xifeng Granules have become a Chinese patent medicine in the market. Because the formula contains Os Draconis, a top-level protected fossil of ancient organisms, the formula was to be improved by replacing Os Draconis with Ostreae Concha. To evaluate whether the improved formula has the same effectiveness and safety as the original formula, a randomized, double-blind, parallel-controlled, equivalence clinical trial was conducted. This study enrolled 288 tic disorder(TD) of children and assigned them into two groups in 1∶1. The treatment group and control group took the modified formula and original formula, respectively. The treatment lasted for 6 weeks, and follow-up visits were conducted at weeks 2, 4, and 6. The primary efficacy endpoint was the difference in Yale global tic severity scale(YGTSS)-total tic severity(TTS) score from baseline after 6 weeks of treatment. The results showed that after 6 weeks of treatment, the declines in YGTSS-TSS score showed no statistically significant difference between the two groups. The difference in YGTSS-TSS score(treatment group-control group) and the 95%CI of the full analysis set(FAS) were-0.17[-1.42, 1.08] and those of per-protocol set(PPS) were 0.29[-0.97, 1.56], which were within the equivalence boundary [-3, 3]. The equivalence test was therefore concluded. The two groups showed no significant differences in the secondary efficacy endpoints of effective rate for TD, total score and factor scores of YGTSS, clinical global impressions-severity(CGI-S) score, traditional Chinese medicine(TCM) response rate, or symptom disappearance rate, and thus a complete evidence chain with the primary outcome was formed. A total of 6 adverse reactions were reported, including 4(2.82%) cases in the treatment group and 2(1.41%) cases in the control group, which showed no statistically significant difference between the two groups. No serious suspected unexpected adverse reactions were reported, and no laboratory test results indicated serious clinically significant abnormalities. The results support the replacement of Os Draconis by Ostreae Concha in the original formula, and the efficacy and safety of the modified formula are consistent with those of the original formula.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Male
;
Double-Blind Method
;
Drugs, Chinese Herbal/therapeutic use*
;
Tic Disorders/drug therapy*
;
Treatment Outcome
9.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
10.Characterization of hippocampal components of Danzhi Xiaoyao Formula based on HPLC-Q-TOF-MS/MS and network pharmacology and assessment of its therapeutic potential for nervous system diseases.
Wen-Qing HU ; Hui-Yuan GAO ; Li YANG ; Yu-Xin WANG ; Hao-Jie CHENG ; Si-Yu YANG ; Mei-Yu ZHANG ; Jian SUN
China Journal of Chinese Materia Medica 2025;50(14):4053-4062
In this study, the pharmacodynamic components and potential pharmacological functions of Danzhi Xiaoyao Formula in treating nervous system diseases were investigated by hippocampal component characterization and network pharmacology. After rats were administrated with Danzhi Xiaoyao Formula by gavage, high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry(HPLC-Q-TOF-MS/MS) was employed to explore the components in the hippocampus of rats. Fifty-seven components were identified in the hippocampus of rats by comparing the extract of Danzhi Xiaoyao Formula, herbal components in the hippocampus after administration, and blank samples. KEGG and GO analyses predicted 74 core targets including GSK3B, MAPK1, AKT, IL6. These targets were involved in PI3K/Akt, NF-κB, MAPK, JAK/STAT, Wnt, and other signaling pathways. The results indicated that Danzhi Xiaoyao Formula may ameliorate other nervous system diseases enriched in DO, such as neurodegenerative diseases, cerebrovascular diseases, and mental and emotional disorders by mediating target pathways, inhibiting inflammation, reducing neuronal damage, and alleviating hippocampal atrophy. The relevant activities exhibited by this formula in nervous system diseases such as Alzheimer's disease, Parkinson's disease, and diabetic neuropathy have extremely high development value and are worthy of further in-depth research. This study provides a theoretical basis and practical guidance for expanding the application of Danzhi Xiaoyao Formula in the treatment of nervous system diseases.
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Rats
;
Hippocampus/metabolism*
;
Network Pharmacology
;
Chromatography, High Pressure Liquid
;
Tandem Mass Spectrometry
;
Rats, Sprague-Dawley
;
Male
;
Nervous System Diseases/genetics*
;
Humans
;
Signal Transduction/drug effects*

Result Analysis
Print
Save
E-mail