1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
2.The Use of Speech in Screening for Cognitive Decline in Older Adults
Si-Wen WANG ; Xiao-Xiao YIN ; Lin-Lin GAO ; Wen-Jun GUI ; Qiao-Xia HU ; Qiong LOU ; Qin-Wen WANG
Progress in Biochemistry and Biophysics 2025;52(2):456-463
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that severely affects the health of the elderly, marked by its incurability, high prevalence, and extended latency period. The current approach to AD prevention and treatment emphasizes early detection and intervention, particularly during the pre-AD stage of mild cognitive impairment (MCI), which provides an optimal “window of opportunity” for intervention. Clinical detection methods for MCI, such as cerebrospinal fluid monitoring, genetic testing, and imaging diagnostics, are invasive and costly, limiting their broad clinical application. Speech, as a vital cognitive output, offers a new perspective and tool for computer-assisted analysis and screening of cognitive decline. This is because elderly individuals with cognitive decline exhibit distinct characteristics in semantic and audio information, such as reduced lexical richness, decreased speech coherence and conciseness, and declines in speech rate, voice rhythm, and hesitation rates. The objective presence of these semantic and audio characteristics lays the groundwork for computer-based screening of cognitive decline. Speech information is primarily sourced from databases or collected through tasks involving spontaneous speech, semantic fluency, and reading, followed by analysis using computer models. Spontaneous language tasks include dialogues/interviews, event descriptions, narrative recall, and picture descriptions. Semantic fluency tasks assess controlled retrieval of vocabulary items, requiring participants to extract information at the word level during lexical search. Reading tasks involve participants reading a passage aloud. Summarizing past research, the speech characteristics of the elderly can be divided into two major categories: semantic information and audio information. Semantic information focuses on the meaning of speech across different tasks, highlighting differences in vocabulary and text content in cognitive impairment. Overall, discourse pragmatic disorders in AD can be studied along three dimensions: cohesion, coherence, and conciseness. Cohesion mainly examines the use of vocabulary by participants, with a reduction in the use of nouns, pronouns, verbs, and adjectives in AD patients. Coherence assesses the ability of participants to maintain topics, with a decrease in the number of subordinate clauses in AD patients. Conciseness evaluates the information density of participants, with AD patients producing shorter texts with less information compared to normal elderly individuals. Audio information focuses on acoustic features that are difficult for the human ear to detect. There is a significant degradation in temporal parameters in the later stages of cognitive impairment; AD patients require more time to read the same paragraph, have longer vocalization times, and produce more pauses or silent parts in their spontaneous speech signals compared to normal individuals. Researchers have extracted audio and speech features, developing independent systems for each set of features, achieving an accuracy rate of 82% for both, which increases to 86% when both types of features are combined, demonstrating the advantage of integrating audio and speech information. Currently, deep learning and machine learning are the main methods used for information analysis. The overall diagnostic accuracy rate for AD exceeds 80%, and the diagnostic accuracy rate for MCI also exceeds 80%, indicating significant potential. Deep learning techniques require substantial data support, necessitating future expansion of database scale and continuous algorithm upgrades to transition from laboratory research to practical product implementation.
3.Effective-compounds of Jinshui Huanxian formula ameliorates pulmonary fibrosis by inhibiting lipid droplet catabolism and thus macrophage M2 polarization
Wen-bo SHAO ; Jia-ping ZHENG ; Peng ZHAO ; Qin ZHANG
Acta Pharmaceutica Sinica 2025;60(2):369-378
This study aims to investigate the effects and mechanisms of the effective-compounds of Jinshui Huanxian formula (ECC-JHF) in improving pulmonary fibrosis. Animal experiments were approved by the Ethics Committee of the Animal Experiment Center of Henan University of Chinese Medicine (approval number: IACUC-202306012). The mouse model of pulmonary fibrosis was induced using bleomycin (BLM). Hematoxylin-eosin (H&E) staining was used to detect the histopathological changes of lung tissues. Masson staining was used to assess the degree of fibrosis in lung tissues. Immunofluorescence (IF) and real-time quantitative PCR (qPCR) were performed to measure the expression of collagen type I (
4.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
5.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
6.Role of circCCDC138 in early malignant transformation of human lung epithelial cells induced by carbon black nanoparticles
Runfeng LI ; Lichun MA ; Shulin QIN ; Wen LIU
Journal of Environmental and Occupational Medicine 2025;42(4):475-481
Background With the large-scale production and application of carbon black nanoparticles (CBNPs), occupational and general exposure is obviously increasing. Related studies have shown that exposure to CBNPs can induce oxidative stress, inflammation, and DNA damage. Objective To establish a CBNPs-induced malignant transformation (C-BEAS-2B) model of human lung epithelial cells (BEAS-2B) and explore the role and mechanism of circCCDC138 in the malignant transformation process. Methods At 0, 10, 20, 40 and 80 μg·mL−1 CBNPs concentrations, cell viability was detected by CCK8 assay. BEAS-2B cells were exposed to 20 mg·mL−1 CBNPs for three months, and a malignant transformation model of BEAS-2B induced by CBNPs was constructed. The migration and invasion abilities of the cells were detected by cell scratch and Transwell assays. The expressions of circ-CCDC138 in BEAS-2B and C-BEAS-2B were detected by qRT-PCR, and its stability was verified by a digestive resistance test. A cell model with interference or overexpression of circCCDC138 was constructed, and the expression of circCCDC138 in the cells was detected by quantitative reverse transcription-PCR. The cell cycle and apoptosis were determined by flow cytometry. Western blot was used to analyze the expression of p53 protein. Results The CBNPs used in the experiment were spherical particles with a chain-like structure. In the 20 μg·mL−1 CBNPs group, the reduction in the viability of BEAS-2B cells was relatively small (10%). Compared with the control cells, the 20 μg·mL−1 CBNPs group showed more obvious cell migration and invasion at 24 h and 48 h, indicating that the exposure to CBNPs induced early malignant transformation of BEAS-2B cells (P<0.01). The circCCDC138 expression in C-BEAS-2B was upregulated in a time-dependent manner after exposure to CBNPs. Compared with the C-BEAS-2B cells, the C-BEAS-2B cells over-expressing circCCDC138 exhibited arrested S phase progression (36.9%) and apoptosis resistance (P<0.01), along with down regulation of p53 protein expression in the cells (P<0.01), while the C-BEAS-2B cells interfering with circCCDC138 showed the opposite results (P<0.01). Conclusion BEAS-2B cells exposed to CBNPs (20 μg·mL−1) have significantly enhanced migration and invasion abilities, showing early malignant transformation characteristics. In addition, circCCDC138 is highly expressed in C-BEAS-2B cells with RNase R digestive resistance and increases in a time-dependent manner with CBNPs exposure. More importantly, circCCDC138 may promote the induction of malignant transformation of cells by inhibiting p53 protein expression.
7.Conditioned medium of osteoclasts promotes angiogenesis in endothelial cells after lactic acid intervention
Hongli HUANG ; Wen NIE ; Yuying MAI ; Yuan QIN ; Hongbing LIAO
Chinese Journal of Tissue Engineering Research 2025;29(11):2210-2217
BACKGROUND:As a degradable scaffold material for bone tissue engineering,lactic acid is widely used in tissue regeneration and repair research,and plays an important role in promoting tissue healing,new bone formation and angiogenesis. OBJECTIVE:To observe the effect of lactic acid degradation products on osteoclasts and to investigate the effects of lactic-interfered osteoclast conditioned medium on the proliferation,migration and tube-forming capacity of human umbilical vein endothelial cells. METHODS:(1)The mouse monocyte macrophage cell line RAW264.7 at logarithmic growth period was selected,and adherent cells were cultured in the osteoclast induction medium(DMEM medium with nuclear factor-κB receptor-activating factor ligand and 10%fetal bovine serum)containing different concentrations of lactic acid(0,5,10,20 mmol/L).After 5 days of culture,tartrate-resistant acid phosphatase staining and cytoskeletal fibrillar actin staining were conducted.After 24 hours of culture,RT-PCR was used to detect the mRNA expression of tartrate-resistant acid phosphatase 5.(2)RAW264.7 cells at logarithmic growth period were selected and adherent cells were divided into two groups.Control group was cultured in the osteoclast induction medium,while experimental group was cultured in the osteoclast induction medium containing 10 mmol/L lactic acid.After 5 days of culture,the medium in each group was removed and the cells in the two groups were cultured in the serum-free DMEM medium for another 24 hours.Cell supernatant was then collected and used as the conditioned medium after mixed with an equal volume of DMEM medium containing 10%fetal bovine serum.Human umbilical vein endothelial cells at the logarithmic growth phase were taken and separately co-cultured with the conditioned medium of the control and experimental groups.The proliferation,migration and tube-forming ability of human umbilical vein endothelial cells were observed by cell counting kit-8 assay,migration assay,scratch assay and tube-forming assay.The mRNA and protein expression of angiogenesis-related genes and proteins were observed by RT-PCR and western blot. RESULTS AND CONCLUSION:Tartrate-resistant acid phosphatase staining and cytoskeletal fibrillar actin staining showed that 5 and 10 mmol/L lactic acid promoted osteoclastic differentiation of RAW264.7 cells and the promoting effect of 10 mmol/L lactate was more significant.RT-PCR results showed that the expression of tartrate-resistant acid phosphatase-5 mRNA of osteoclast-related genes was the highest when the lactic acid concentration was 5,10,and 20 mmol/L(P<0.05),especially 10 mmol/L.Compared with the control group,the proliferation,migration and tube-forming abilities of human umbilical vein endothelial cells were significantly increased in the experimental group(P<0.05).Compared with the control group,the expression levels of vascular endothelial growth factor and angiogenin 1 mRNA and protein were increased in the experimental group(P<0.05).To conclude,lactate-induced osteoclast conditioned medium could promote the angiogenesis of endothelial cells,and the mechanism may be related to the promotion of the expression of vascular endothelial growth factor and angiogenin 1.
8.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
9.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
10.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.

Result Analysis
Print
Save
E-mail