1.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
2.Construction of evaluation index system of infectious disease prevention and control ability in colleges and universities
Chinese Journal of School Health 2025;46(3):438-442
Objective:
To construct a scientific and perfect evaluation index system of infectious disease prevention and control ability in colleges and universities, so as to provide reference tools for colleges and universities to effectively respond to infectious disease.
Methods:
The initial framework of the evaluation index system of infectious disease prevention and control ability in colleges and universities was constructed by using literature analysis method. Experts familiar with infectious disease prevention and control or school health work were selected to conduct two rounds( n =16,18) of Delphi expert consultation for determining the evaluation index system. Analytical hierarchy process was used to calculate the index weights and combined weights. About 198 prevention and control personnel were conveniently selected from 3 universities in Inner Mongolia Autonomous Region to comprehensively evaluate the evaluation indicators by using fuzzy comprehensive evaluation method.
Results:
After two rounds of Delphi consultation questionnaire, the effective recovery rates were 80.0% and 90.0%, the expert authority levels were 0.89 and 0.86, the expert harmony coefficients for Kendall W were 0.166 and 0.310, and the variation coefficient of each index was <0.25. Finally, the evaluation index system of infectious disease prevention and control ability of colleges and universities included 4 first level indicators, 14 second level indicators and 75 third level indicators. The weights of prevention and monitoring and early warning, organizational system guarantee, emergency management, rehabilitation and summary were 0.176, 0.476, 0.268 and 0.080, respectively. The top 3 weights of the secondary indexes were 0.623 for infectious disease surveillance and early warning, 0.595 for loss assessment and 0.370 for emergency response. The score of fuzzy comprehensive evaluation of the index system of infectious disease prevention and control ability in colleges and universities was 79.148, suggesting a high level.
Conclusion
The established evaluation index system of infectious disease prevention and control ability in colleges and universities is scientific and reasonable, which is conducive to provide tool reference for the evaluation of infectious disease prevention and control ability in colleges and universities.
3.Effects of different storage temperatures and durations on the activity of coagulation factor Ⅷ and Ⅸ in whole blood
Hehe WANG ; Tiantian WANG ; Jie WANG ; Cuicui QIAO ; Wei LIU ; Xueqin ZHANG ; Yan CHENG ; Yunhai FANG ; Xinsheng ZHANG
Chinese Journal of Blood Transfusion 2025;38(6):824-827
Objective: To investigate the effects of different storage temperatures and durations on the activities of coagulation factor Ⅷ (Factor Ⅷ, FⅧ) and coagulation factor Ⅸ (Factor Ⅸ, FⅨ) after whole blood collection, so as to provide data support for the optimal storage conditions. Methods: A total of 16 mL of whole blood was collected from each of the 20 healthy volunteers at our blood center and aliquoted into 8 sodium citrate anticoagulant tubes. Two tubes were immediately centrifuged for the measurement of FⅧ and FⅨ activity levels. The remaining 6 tubes of whole blood were respectively stored under room temperature and low-temperature conditions. At 2, 4, and 6 h, the whole blood samples were centrifuged and analyzed for FⅧ and FⅨ activity levels. The mean values of the two immediately tested tubes were used as the control group, while other tubes were designated as the experimental groups for comparison. Statistical analysis was performed using SPSS 26.0. Results: The activity of FⅧ in whole blood remained stable after 4 hours of storage at both room temperature and low temperature (116.53±25.95 vs 125.22±27.33, 109.77±23.23 vs 125.22±27.33) (P>0.05 for both). However, by 6 hours, FⅧ activity showed a statistically significant decline compared to the control group (108.65±22.92 vs 125.22±27.33, 100.46±20.19 vs 125.22±27.33) (P<0.05 for both), though the room temperature group results were closer to the control values. The activity of FⅨ in whole blood remained stable after 6 hours of storage under both conditions (97.14±19.48 vs 96.76±19.67, 97.10±17.45 vs 96.76±19.6) (P>0.05 for all comparisons). Conclusion: For whole blood samples after collection, storage at either room temperature or low temperature for up to 4 hours does not compromise the accuracy of test results. When stored for 6 hours, FⅨ activity remains stable, whereas FⅧ activity decreases significantly. Notably, FⅧ activity demonstrates better stability at room temperature than under low-temperature conditions within the 6-hour storage.
4. A network pharmacology-based approach to explore mechanism of kaempferol-7 -O -neohesperidoside against prostate cancer
Qiu-Ping ZHANG ; Zhi-Ping CHENG ; Wei XUE ; Qiao-Feng LI ; Hong-Wei GUO ; Qiu-Ping ZHANG ; Jie-Jun FU ; Hong-Wei GUO
Chinese Pharmacological Bulletin 2024;40(1):146-154
Aim To explore the effect of kaempferol-7- 0-neohesperidoside (K70N) against prostate cancer (PCa) and the underlying mechanism. Methods The effect of K70N on the proliferation of PCa cell lines PC3, DU145, C4-2 and LNCaP was detected using CCK8 assay. The effect of K70N on migration ability of DU145 cells was determined by wound healing assay. The targets of K70N and PCa were screened from SuperPred and other databases. The common targets both related to K70N and PCa were obtained from the Venny online platform, a protein-protein interaction network (PPI) was constructed by the String and Cyto- scape. Meanwhile, the GO and KEGG functional enrichment were analyzed by David database. Then, a "drug-target-disease-pathway" network model was constructed. Cell cycle of PCa cells treated with K70N was analyzed by flow cytometry. The expressions of cycle-associated proteins including Skp2, p27 and p21 protein were detected by Western blot. Molecular docking between Skp2 and K70N was conducted by Sybyl X2. 0. Results K70N significantly inhibited the proliferation and migration of PCa cells. A total number of 34 drug-disease intersection targets were screened. The String results showed that Skp2 and p27, among the common targets, were the key targets of K70N for PCa treatment. Furthermore, GO and KEGG functional en-richment indicated that the mechanism was mainly related to the cell cycle. Flow cytometry showed that K70N treatment induced cell cycle arrest at the S phase. Compared with the control group, the protein expression level of Skp2 was significantly down-regulated, while the protein expression levels of p27 and p21 were up-regulated. The network molecular docking indicated that the ligand K70N had a good binding ability with the receptor Skp2. Conclusions K70N could inhibit the proliferation and migration of PCa cells, block the cell cycle in the S phase, which may be related to the regulation of cell cycle through the Skp2- p27/p21 signaling pathway.
5.Source analysis and health risk assessment of polycyclic aromatic hydrocarbons in atmospheric PM2.5 in a district of Taizhou City from 2019 to 2021
Yanqiu ZHANG ; Guang YU ; Wei WANG ; Li HANG ; Qian WANG ; Li WANG ; Qiuju QIAO ; Jiuhong HUANG
Journal of Environmental and Occupational Medicine 2024;41(1):54-61
Background Polycyclic aromatic hydrocarbons (PAHs), one of the main components of fine particulate matter (PM2.5), have a certain impact on ambient air quality, and long-term exposure to PAHs may pose potential health risks to human beings. Objective To identify the distribution characteristics and sources of PAHs in atmospheric PM2.5 in a district of Taizhou City from 2019 to 2021, and to evaluate the health risks of PAHs to the population in the area through the inhalation pathway. Methods From 2019 to 2021, air PM2.5 sampling was carried out at a state-controlled surveillance point in a district of Taizhou City for 7 consecutive days on the 10th-16th of each month, the sampling time was 24 h·d−1, and the sampling flow rate was 100 L·min−1. PM2.5 mass concentration was calculated by gravimetric method. A total of 16 PAHs were determined by ultrasonic extraction-liquid chromatography. Kruskal-Wallis H test was used to compare the distribution charac teristics of PAHs concentrations by years and seasons, characteristic ratio and principal component analysis (PCA) was used to analyze their sources, and a lifetime carcinogenic risk (ILCR) model was used to assess the health risk of PAHs. Results From 2019 to 2021, the annual average concentrations [M (P25, P75)] of ∑PAHs in atmospheric PM2.5 in the selected district of Taizhou City were 6.52 (2.46, 10.59), 8.52 (4.56, 12.29), and 3.72 (1.51, 7.11) ng·m−3, respectively, and the annual benzo[a]pyrene (BaP) excess rates (national limit: 1 ng·m−3) were 27.38% (23/84), 47.62% (40/84), and 19.04% (16/84), respectively, both presenting 2020> 2019 > 2021 (P<0.001, P<0.05). The ∑PAHs concentration distribution showed a seasonal variation, with the highest value in winter and the lowest value in summer (P<0.05). Among the atmospheric PM2.5 samples, the proportion of 5-ring PAHs was the highest, the proportion of 2-3-ring PAHs was the lowest; the proportion of 2-4-ring PAHs showed a yearly upward trend, and the proportion of 5-6-ring PAHs showed yearly downward trend (P<0.05). The characteristic ratio and PCA results suggested that the sources of sampled PAHs were mainly mixed sources such as dust, fossil fuel (natural gas), coal combustion, industrial emissions, and motor vehicle exhaust emissions. The ILCR (RILCR) of PAHs by inhalation for men, women, and children were 1.83×10−6, 2.35×10−6, and 2.04×10−6, respectively, and the annual average RILCR was 2.07×10−6, all greater than 1×10−6. Conclusion For the sampled time period, the main sources of PAHs pollution in atmospheric PM2.5 in the target district of Taizhou City are dust, fossil fuel (natural gas), coal combustion, industrial emissions, motor vehicle emissions, etc., and PAHs may have a potential carcinogenic risk to local residents.
6.Three-dimensional Printing of Inertial Microchannel with Complex Cross-section and Characterization of Particle Inertial Focusing
Qiao GU ; Xin-Jie ZHANG ; Yao LIU ; Yang BAO ; Hang-Jie ZHU ; Ya-Wei CHEN
Chinese Journal of Analytical Chemistry 2024;52(1):93-101
Projection micro stereolithography three-dimensional(3D)printing method was proposed in this study to fabricate complex microchannels of combined cross-sections.By using 3D printing and polydimethylsiloxane(PDMS)replication methods,two inertial microfluidic chips of three-step and five-step cross-sections were fabricated,and the dimension precisions of the microchannels were controlled within 20 μm.Using the microfluidic chips,the movements of two fluorescent polystyrene particles with diameters of 10 and 6 μm in the stepped channels were investigated.In addition,numerical simulations were applied to demonstrate the inertial focusing mechanisms of particles in the channels.It was found that 10-μm particles had three equilibrium positions in the three-step channel,which located at the inner walls of the three steps,respectively,and most particles focused at the inner step.The 6-μm particles also had three equilibrium positions in the three-step channel.However,the particles migrated to the middle and the outer steps under high flow rates.In the five-step channel,when the flow rate was increased gradually,10-μm particles had a single and two equilibrium positions,respectively,and the particles migrated towards the inner channel wall under high flow rates.In comparison to 10-μm particles,6-μm particles had two stable equilibrium positions in the five-step channel at all flow rate range.It could be concluded that the quantity,shape and strength of the secondary flow vortex could be altered by changing structure of the combined cross-section,thus the equilibrium positions and quantities of the focusing particles could be also regulated.The research outcome might provide new insights for precise cell inertial manipulation and promote the application and development of inertial microfluidic technology in biomedical and other fields.
7.Finite element analysis of osteoporosis in proximal femur after cannulated screw fixation for femoral neck fracture
Xiaofeng XUE ; Yongkang WEI ; Xiaohong QIAO ; Yuyong DU ; Jianjun NIU ; Lixin REN ; Huifeng YANG ; Zhimin ZHANG ; Yuan GUO ; Weiyi CHEN
Chinese Journal of Tissue Engineering Research 2024;28(6):862-867
BACKGROUND:After the internal fixation of cannulated screws in femoral neck fractures,because the affected limb is often unable to bear weight in the short term and the implants with high stiffness have a stress shielding effect on the fracture end,it is easy to cause osteoporosis of the affected limb and changes in the biomechanical distribution of the proximal femur,the incidence of osteonecrosis of the femoral head is high after surgery.At present,few studies have been conducted on the biomechanical effects of osteoporosis at the proximal end of the femur occurring after femoral neck fracture surgery on femoral neck fracture treated with cannulated screws. OBJECTIVE:Using finite element analysis,to investigate the biomechanical effects of osteoporosis occurring after femoral neck fracture surgery on femoral neck fracture treated with cannulated screws and explore the role of biomechanical factors in osteonecrosis of the femoral head. METHODS:Based on the obtained CT scan data of the femur in a patient with a femoral neck fracture,a proximal femoral model for internal fixation for femoral neck fracture was established by Mimics 19.0,3-Matic,UG 11.0,Hypermesh 14.0,and Abaqus software.One finite element model of the proximal femur without osteoporosis and three finite element models of the proximal femur with osteoporosis were analyzed using Abaqus software.The stress,contact pressure,displacement peak and cloud map under different components of the four models were measured and analyzed,and the internal stress changes and distribution of the femoral head were compared and analyzed. RESULTS AND CONCLUSION:The stresses and contact pressures of the femoral head and lower anterior cannulated screws varied more with the degree of osteoporosis.The peak displacement of the four models increased slowly with the degree of osteoporosis.By one-way analysis of variance,there was no significant effect of the degree of osteoporosis on the peak stress,contact pressure,and displacement of the different components.The internal stress distribution of the femoral head changed with the degree of osteoporosis.Changes in the biomechanical environment of the proximal femur have an important impact on osteonecrosis of the femoral head.
8.Research on the Optimization Strategy of Operating Room Efficiency in the First Affiliated Hospital of Zhengzhou University
Wei QIAO ; Shuai JIANG ; Ruonan LU ; Di WU ; Dongqing ZHANG ; Jinjin ZHAO
Chinese Health Economics 2024;43(6):85-88
The operating room was the core department of a hospital,and its operational efficiency had a significant impact on the high-quality development of a hospital.An analysis has revealed that low efficiency and irrational allocation in the operating room were mainly due to the lack of operational regulations and norms,the unreasonable arrangement of surgical specialties,and the unbalanced allocation of supporting resources.To address these issues,the First Affiliated Hospital of Zhengzhou University has taken into account the overall allocation of resources for the central operating room and the central operating room,and formulated strategies to improve operational efficiency,including adjusting the operational mechanism,optimizing the structure of surgical specialties,and providing corresponding supporting resources.Based on the adjustment of surgical structure,the implementation effect of the program was measured and evaluated,which provided practical strategies for optimizing operating room efficiency in hospitals.
9.Reflection and Exploration on Medical Equipment Sharing Operation Mechanisms in Large Public Hospitals
Wei QIAO ; Yingbo CHEN ; Dongqing ZHANG ; Di WU ; Xinyue LIU ; Zhuzi YUEGUANG ; Tian ZHANG ; Shuai JIANG ; Jinjin ZHAO
Chinese Health Economics 2024;43(7):69-71,92
The increasing operating pressure of large public hospitals has forced hospitals to focus on opening up income sources and reducing expenditure.The purchase and maintenance of medical equipment is one of the important economic activities of hospi-tals.However,there are problems in large public hospitals,such as the argumentation for equipment acquisition ignoring evaluation of operational efficiency,the costing model that leads to a lack of willingness of departments to purchase equipment,and the lack of standard processes and systems for renting medical equipment among departments.Based on this,it explores the establishment of a medical equipment sharing operation mechanism in large public hospitals,promotes the improvement of the efficiency of medical equipment use in large public hospitals by establishing a medical equipment sharing center,standardizing the purchase of shared equipment,entering shared equipment information,setting up shared equipment leasing specifications,and clarifying the equipment return process and maintenance,so as to effectively control hospital operating costs,and help the high-quality development of public hospitals.
10.Construction of blood quality monitoring indicator system in blood banks of Shandong
Qun LIU ; Xuemei LI ; Yuqing WU ; Zhiquan RONG ; Zhongsi YANG ; Zhe SONG ; Shuhong ZHAO ; Lin ZHU ; Shuli SUN ; Wei ZHANG ; Jinyu HAN ; Xiaojuan FAN ; Hui YE ; Mingming QIAO ; Hua SHEN ; Dunzhu GONGJUE ; Yunlong ZHUANG
Chinese Journal of Blood Transfusion 2024;37(3):249-257
【Objective】 To establish a blood quality monitoring indicator system, in order to continuously improve blood quality and standardized management. 【Methods】 Based on the research of literature and standards, and guided by the key control points of blood collection and supply process, the blood quality monitoring indicator system was developed. Through two rounds of Delphi expert consultation, the indicator content was further revised and improved according to expert opinions after six months of trial implementation. The indicator weight was calculated by questionnaire and analytic hierarchy process. 【Results】 A blood quality monitoring indicator system covering the whole process of blood collection and supply was constructed, including five primary indicators, namely blood donation service, blood component preparation, blood testing, blood supply and quality control, as well as 72 secondary indicators, including definitions, calculation formulas, etc. Two rounds of expert consultation and two rounds of feasibility study meeting were held to revise 17 items and the weight of each indicator was obtained through the analytic hierarchy process. After partial adjustments, a blood quality monitoring indicator system was formed. 【Conclusion】 A blood quality monitoring indicator system covering the whole process of blood collection and supply has been established for the first time, which can effectively evaluate the quality management level of blood banks and coordinate blood quality control activities of blood banks in Shandong like pieces in a chess game, thus improving the standardized management level


Result Analysis
Print
Save
E-mail