1.Construction and application of the "Huaxi Hongyi" large medical model
Rui SHI ; Bing ZHENG ; Xun YAO ; Hao YANG ; Xuchen YANG ; Siyuan ZHANG ; Zhenwu WANG ; Dongfeng LIU ; Jing DONG ; Jiaxi XIE ; Hu MA ; Zhiyang HE ; Cheng JIANG ; Feng QIAO ; Fengming LUO ; Jin HUANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):587-593
		                        		
		                        			
		                        			Objective  To construct large medical model named by "Huaxi HongYi"and explore its application effectiveness in assisting medical record generation. Methods  By the way of a full-chain medical large model construction paradigm of "data annotation - model training - scenario incubation", through strategies such as multimodal data fusion, domain adaptation training, and localization of hardware adaptation, "Huaxi HongYi" with 72 billion parameters was constructed. Combined with technologies such as speech recognition, knowledge graphs, and reinforcement learning, an application system for assisting in the generation of medical records was developed. Results Taking the assisted generation of discharge records as an example, in the pilot department, after using the application system, the average completion times of writing a medical records shortened (21 min vs. 5 min) with efficiency increased by 3.2 time, the accuracy rate of the model output reached 92.4%. Conclusion  It is feasible for medical institutions to build independently controllable medical large models and incubate various applications based on these models, providing a reference pathway for artificial intelligence development in similar institutions.
		                        		
		                        		
		                        		
		                        	
2. A network pharmacology-based approach to explore mechanism of kaempferol-7 -O -neohesperidoside against prostate cancer
Qiu-Ping ZHANG ; Zhi-Ping CHENG ; Wei XUE ; Qiao-Feng LI ; Hong-Wei GUO ; Qiu-Ping ZHANG ; Jie-Jun FU ; Hong-Wei GUO
Chinese Pharmacological Bulletin 2024;40(1):146-154
		                        		
		                        			
		                        			 Aim To explore the effect of kaempferol-7- 0-neohesperidoside (K70N) against prostate cancer (PCa) and the underlying mechanism. Methods The effect of K70N on the proliferation of PCa cell lines PC3, DU145, C4-2 and LNCaP was detected using CCK8 assay. The effect of K70N on migration ability of DU145 cells was determined by wound healing assay. The targets of K70N and PCa were screened from SuperPred and other databases. The common targets both related to K70N and PCa were obtained from the Venny online platform, a protein-protein interaction network (PPI) was constructed by the String and Cyto- scape. Meanwhile, the GO and KEGG functional enrichment were analyzed by David database. Then, a "drug-target-disease-pathway" network model was constructed. Cell cycle of PCa cells treated with K70N was analyzed by flow cytometry. The expressions of cycle-associated proteins including Skp2, p27 and p21 protein were detected by Western blot. Molecular docking between Skp2 and K70N was conducted by Sybyl X2. 0. Results K70N significantly inhibited the proliferation and migration of PCa cells. A total number of 34 drug-disease intersection targets were screened. The String results showed that Skp2 and p27, among the common targets, were the key targets of K70N for PCa treatment. Furthermore, GO and KEGG functional en-richment indicated that the mechanism was mainly related to the cell cycle. Flow cytometry showed that K70N treatment induced cell cycle arrest at the S phase. Compared with the control group, the protein expression level of Skp2 was significantly down-regulated, while the protein expression levels of p27 and p21 were up-regulated. The network molecular docking indicated that the ligand K70N had a good binding ability with the receptor Skp2. Conclusions K70N could inhibit the proliferation and migration of PCa cells, block the cell cycle in the S phase, which may be related to the regulation of cell cycle through the Skp2- p27/p21 signaling pathway. 
		                        		
		                        		
		                        		
		                        	
3.Research progress of large-scale brain network of Alzheimer's disease based on MRI analysis
Ying-Mei HAN ; Yijie LI ; Heng ZHANG ; Jing LV ; Yi ZHANG ; Yingbo QIAO ; Nan LIN ; Huiyong XU ; Feng WANG
The Journal of Practical Medicine 2024;40(4):575-579
		                        		
		                        			
		                        			With the advent of an aging society,Alzheimer's disease(AD)has gradually become a major ailment affecting the elderly.AD is a neurodegenerative disorder associated with cognitive impairments.In AD patients,brain network connections are disrupted,and their topological properties are also affected,leading to the disintegration of anatomical and functional connections.Anatomical connections can be tracked and evaluated using structural magnetic imaging(MRI)and diffusion tensor imaging(DTI),while functional connections are detected through functional MRI to assess their connectivity status.This review incorporates the findings of previous scholars and summarizes the current research of AD.It mainly discusses the imaging characteristics of large-scale brain network changes in AD patients,so as to provide researchers with scientific and objective imaging markers for AD prediction and early diagnosis,as well as future research.
		                        		
		                        		
		                        		
		                        	
4.Establishment and evaluation of a neutralizing antibody detection model for West Nile virus pseudovirus
Wanlu ZHU ; Nan CHEN ; Xiangjun HAO ; Junjuan FENG ; Xing LU ; Jing WANG ; Guojiang CHEN ; Chunxia QIAO ; Xinying LI ; Chenghua LIU ; Beifen SHEN ; Jiannan FENG ; Jun ZHANG ; He XIAO
Chinese Journal of Experimental and Clinical Virology 2024;38(2):188-192
		                        		
		                        			
		                        			Objective:To establish an in vivo infection model of West Nile virus (WNV) pseudovirus and evaluate the neutralizing activity of antibody WNV-XH1.Methods:A stable cell line that can package the WNV pseudovirus was established in the early stage to prepare the pseudovirus supernatant. The supernatant was concentrated and infected BHK21 cells to detect the titer of the pseudovirus. After intraperitoneal injection of the pseudovirus into C57BL/J mice, bioluminescence imaging was performed to observe the infection status of the pseudovirus in the mice. After simultaneous infection, blood was collected and ELISA was used to detect NS1 levels in mouse serum. The in vivo functional activity of antibody WNV-XH1 was evaluated using the established mouse infection model.Results:Fluorescence was detected in C57BL/J mice infected with WNV pseudovirus, and the NS1 levels in the peripheral blood serum of mice infected with pseudovirus were significantly higher than those of non infected mice (1.453±0.09vs0.305±0.018). After intravenous administration of WNV-XH1 antibody before the attack, the fluorescence signal in the mice decreased and the serum NS1 level decreased (0.384±0.015).Conclusions:A successful in vivo infection model of WNV pseudovirus was established, and it was confirmed that the antibody WNV-XH1 had a protective effect against WNV pseudovirus infection in vivo.
		                        		
		                        		
		                        		
		                        	
5.RBMX overexpression inhibits proliferation,migration,invasion and glycolysis of human bladder cancer cells by downregulating PKM2
Qiuxia YAN ; Peng ZENG ; Shuqiang HUANG ; Cuiyu TAN ; Xiuqin ZHOU ; Jing QIAO ; Xiaoying ZHAO ; Ling FENG ; Zhenjie ZHU ; Guozhi ZHANG ; Hong HU ; Cairong CHEN
Journal of Southern Medical University 2024;44(1):9-16
		                        		
		                        			
		                        			Objective To investigate the role of RNA-binding motif protein X-linked(RBMX)in regulating the proliferation,migration,invasion and glycolysis in human bladder cancer cells.Methods A lentivirus vectors system and RNA interference technique were used to construct bladder cancer 1376 and UC-3 cell models with RBMX overexpression and knockdown,respectively,and successful cell modeling was verified using RT-qPCR and Western blotting.Proliferation and colony forming ability of the cells were evaluated using EdU assay and colony-forming assay,and cell migration and invasion abilities were determined using Transwell experiment.The expressions of glycolysis-related proteins M1 pyruvate kinase(PKM1)and M2 pyruvate kinase(PKM2)were detected using Western blotting.The effects of RBMX overexpression and knockdown on glycolysis in the bladder cancer cells were assessed using glucose and lactic acid detection kits.Results RT-qPCR and Western blotting confirmed successful construction of 1376 and UC-3 cell models with RBMX overexpression and knockdown.RBMX overexpression significantly inhibited the proliferation,clone formation,migration and invasion of bladder cancer cells,while RBMX knockdown produced the opposite effects.Western blotting results showed that RBMX overexpression increased the expression of PKM1 and decreased the expression of PKM2,while RBMX knockdown produced the opposite effects.Glucose consumption and lactate production levels were significantly lowered in the cells with RBMX overexpression(P<0.05)but increased significantly following RBMX knockdown(P<0.05).Conclusion RBMX overexpression inhibits bladder cancer progression and lowers glycolysis level in bladder cancer cells by downregulating PKM2 expression,suggesting the potential of RBMX as a molecular target for diagnosis and treatment of bladder cancer.
		                        		
		                        		
		                        		
		                        	
6.RBMX overexpression inhibits proliferation,migration,invasion and glycolysis of human bladder cancer cells by downregulating PKM2
Qiuxia YAN ; Peng ZENG ; Shuqiang HUANG ; Cuiyu TAN ; Xiuqin ZHOU ; Jing QIAO ; Xiaoying ZHAO ; Ling FENG ; Zhenjie ZHU ; Guozhi ZHANG ; Hong HU ; Cairong CHEN
Journal of Southern Medical University 2024;44(1):9-16
		                        		
		                        			
		                        			Objective To investigate the role of RNA-binding motif protein X-linked(RBMX)in regulating the proliferation,migration,invasion and glycolysis in human bladder cancer cells.Methods A lentivirus vectors system and RNA interference technique were used to construct bladder cancer 1376 and UC-3 cell models with RBMX overexpression and knockdown,respectively,and successful cell modeling was verified using RT-qPCR and Western blotting.Proliferation and colony forming ability of the cells were evaluated using EdU assay and colony-forming assay,and cell migration and invasion abilities were determined using Transwell experiment.The expressions of glycolysis-related proteins M1 pyruvate kinase(PKM1)and M2 pyruvate kinase(PKM2)were detected using Western blotting.The effects of RBMX overexpression and knockdown on glycolysis in the bladder cancer cells were assessed using glucose and lactic acid detection kits.Results RT-qPCR and Western blotting confirmed successful construction of 1376 and UC-3 cell models with RBMX overexpression and knockdown.RBMX overexpression significantly inhibited the proliferation,clone formation,migration and invasion of bladder cancer cells,while RBMX knockdown produced the opposite effects.Western blotting results showed that RBMX overexpression increased the expression of PKM1 and decreased the expression of PKM2,while RBMX knockdown produced the opposite effects.Glucose consumption and lactate production levels were significantly lowered in the cells with RBMX overexpression(P<0.05)but increased significantly following RBMX knockdown(P<0.05).Conclusion RBMX overexpression inhibits bladder cancer progression and lowers glycolysis level in bladder cancer cells by downregulating PKM2 expression,suggesting the potential of RBMX as a molecular target for diagnosis and treatment of bladder cancer.
		                        		
		                        		
		                        		
		                        	
7.Transcriptomic characteristics analysis of bone from chronic osteomyelitis
Yang ZHANG ; Yi-Yang LIU ; Li-Feng SHEN ; Bing-Yuan LIN ; Dan SHOU ; Qiao-Feng GUO ; Chun ZHANG
China Journal of Orthopaedics and Traumatology 2024;37(5):519-526
		                        		
		                        			
		                        			Objective To explore the molecular mechanism of chronic osteomyelitis and to clarify the role of MAPK signal pathway in the pathogenesis of chronic osteomyelitis,by collecting and analyzing the transcriptional information of bone tissue in patients with chronic osteomyelitis.Methods Four cases of traumatic osteomyelitis in limbs from June 2019 to June 2020 were selected,and the samples of necrotic osteonecrosis from chronic osteomyelitis(necrotic group),and normal bone tissue(control group)were collected.Transcriptome information was collected by Illumina Hiseq Xten high throughput sequencing platform,and the gene expression in bone tissue was calculated by FPKM.The differentially expressed genes were screened by comparing the transcripts of the Necrotic group and control group.Genes were enriched by GO and KEGG.MAP3K7 and NFATC1 were selected as differential targets in the verification experiments,by using rat osteomyelitis animal model and im-munohistochemical analysis.Results A total of 5548 differentially expressed genes were obtained by high throughput sequenc-ing by comparing the necrotic group and control group,including 2701 up-regulated and 2847 down-regulated genes.The genes enriched in MAPK pathway and osteoclast differentiation pathway were screened,the common genes expressed in both MAPK and osteoclast differentiation pathway were(inhibitor of nuclear factor κ subunit Beta,IκBKβ),(mitogen-activated protein ki-nase 7,MAP3K7),(nuclear factor of activated t cells 1,NFATC1)and(nuclear factor Kappa B subunit 2,NFκB2).In rat os-teomyelitis model,MAP3K7 and NFATC1 were highly expressed in bone marrow and injured bone tissue.Conclusion Based on the transcriptome analysis,the MAPK signaling and osteoclast differentiation pathways were closely related to chronic os-teomyelitis,and the key genes IκBKβ,MAP3K7,NFATC1,NFκB2 might be new targets for clinical diagnosis and therapy of chronic osteomyelitis.
		                        		
		                        		
		                        		
		                        	
8.Exploration of the Effect of Guhuaisi Kangfu Pills on Neovascularisation of Steroid-Induced Osteonecrosis of the Femoral Head in Rats Based on Gene Expression of VEGF/PI3K/Akt Pathway
Wen-Xi LI ; Liang-Yu TIAN ; Jin ZHANG ; Cai-Hong SHEN ; Zhi-Min YANG ; Xiao-Yan FENG ; Jia-Qiao GUO ; Yu-Ju CAO
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(8):2127-2135
		                        		
		                        			
		                        			Objective To observe the therapeutic effect and mechanism of Guhuaisi Kangfu Pills on rats with steroid-induced osteonecrosis of the femoral head(SONFH).Methods Sixty rats were randomly divided into blank group,model group,Xianling Gubao Capsules group and Guhuaisi Kangfu Pills low-,medium-and high-dose groups,10 rats in each group.Except for the blank group,the SONFH model was established by lipopolysaccharide combined with Glucocorticoid induction method in all other groups of rats.At the end of the intervention,for the femoral head,blood vessel radiography was performed to observe the microvascular changes in the bone marrow,and hematoxylin-eosin(HE)staining and calculation of the empty bone trap rate,Micro-CT scanning analysis,and compression experiments were carried out,and the real-time quantitative polymerase chain reaction(RT-qPCR)was used to detect the gene expressions of phosphatidylinositol 3-kinase(PI3K),protein kinase B(Akt)1,vascular endothelial growth factor(VEGF)and platelet endothelial cell adhesion molecule 1(CD31)in whole blood.Results Compared with the blank group,the blood supply in the femoral head medullary cavity of the model group was poor,the empty bone lacuna rate was increased(P<0.05),the bone mineral density and bone volume fraction were significantly decreased(P<0.05),the maximum load and elastic modulus of the femoral head were decreased(P<0.05),and the mRNA expression levels of Akt1,PI3K,VEGF and CD31 in whole blood were decreased(P<0.05).Compared with the model group,the blood supply in the femoral head medullary cavity was relatively good,the empty bone lacuna rate was decreased(P<0.05),the bone mineral density,bone volume fraction,trabecular number and trabecular thickness were significantly increased(P<0.05),the trabecular separation was significantly decreased(P<0.05),the maximum load and elastic modulus of the femoral head were increased(P<0.05),and the mRNA expression levels of Akt1,PI3K,VEGF and CD31 in the whole blood were increased(P<0.05)in the high-dose group of Guhuaisi Kangfu Pills and Xianling Gubao Capsules group.There was no significant difference in the above indexes between the high-dose group of Guhuaisi Kangfu Pills and the Xianling Gubao Capsules group(P>0.05).Conclusion Guhuaisi Kangfu Pills improves SONFH in rats,and its mechanism is related to the promotion of VEGF/PI3K/Akt pathway gene expression,thereby promoting angiogenesis.
		                        		
		                        		
		                        		
		                        	
9.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
		                        		
		                        			
		                        			Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
		                        		
		                        		
		                        		
		                        	
10.Clinical guidelines for the diagnosis and treatment of osteoporotic thoracolumbar vertebral fracture with kyphotic deformity in the elderly (version 2024)
Jian CHEN ; Qingqing LI ; Jun GU ; Zhiyi HU ; Shujie ZHAO ; Zhenfei HUANG ; Tao JIANG ; Wei ZHOU ; Xiaojian CAO ; Yongxin REN ; Weihua CAI ; Lipeng YU ; Tao SUI ; Qian WANG ; Pengyu TANG ; Mengyuan WU ; Weihu MA ; Xuhua LU ; Hongjian LIU ; Zhongmin ZHANG ; Xiaozhong ZHOU ; Baorong HE ; Kainan LI ; Tengbo YU ; Xiaodong GUO ; Yongxiang WANG ; Yong HAI ; Jiangang SHI ; Baoshan XU ; Weishi LI ; Jinglong YAN ; Guangzhi NING ; Yongfei GUO ; Zhijun QIAO ; Feng ZHANG ; Fubing WANG ; Fuyang CHEN ; Yan JIA ; Xiaohua ZHOU ; Yuhui PENG ; Jin FAN ; Guoyong YIN
Chinese Journal of Trauma 2024;40(11):961-973
		                        		
		                        			
		                        			The incidence of osteoporotic thoracolumbar vertebral fracture (OTLVF) in the elderly is gradually increasing. The kyphotic deformity caused by various factors has become an important characteristic of OTLVF and has received increasing attention. Its clinical manifestations include pain, delayed nerve damage, sagittal imbalance, etc. Currently, the definition and diagnosis of OTLVF with kyphotic deformity in the elderly are still unclear. Although there are many treatment options, they are controversial. Existing guidelines or consensuses pay little attention to this type of fracture with kyphotic deformity. To this end, the Lumbar Education Working Group of the Spine Branch of the Chinese Medicine Education Association and Editorial Committee of Chinese Journal of Trauma organized the experts in the relevant fields to jointly develop Clinical guidelines for the diagnosis and treatment of osteoporotic thoracolumbar vertebral fractures with kyphotic deformity in the elderly ( version 2024), based on evidence-based medical advancements and the principles of scientificity, practicality, and advanced nature, which provided 18 recommendations to standardize the clinical diagnosis and treatment.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail