1.Efficacy Mechanism of Xianlian Jiedu Prescription Against Colorectal Cancer Recurrence vias Regulating Angiogenesis
Yanru XU ; Lihuiping TAO ; Jingyang QIAN ; Weixing SHEN ; Jiani TAN ; Chengtao YU ; Minmin FAN ; Changliang XU ; Yueyang LAI ; Liu LI ; Dongdong SUN ; Haibo CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):79-87
ObjectiveTo explore effect of Xianlian Jiedu prescription on the recurrence of colorectal cancer (CRC) and investigate the related mechanisms. MethodsA postoperative recurrence model was established in 25 Balb/c mice by injecting CT26 cells subcutaneously into the armpit, followed by surgical removal of 99% of the subcutaneous tumor. The mice were randomly divided into model group, low-dose Xianlian Jiedu prescription (XLJDP-L) group (6.45 g·kg-1·d-1), medium-dose Xianlian Jiedu prescription (XLJDP-M) group (12.9 g·kg-1·d-1), high-dose Xianlian Jiedu prescription (XLJDP-H) group (25.8 g·kg-1·d-1), and 5-fluorouracil (5-FU) group (1×10-3 g·kg-1·d-1). The mice were euthanized after 14 days of continuous intervention, and recurrent tumor tissue was harvested. Hematoxylin and eosin (HE) staining was used to observe pathological and morphological changes in the recurrent tumor tissue. Immunohistochemistry (IHC) was employed to assess the expression of proliferating cell nuclear antigen (Ki67), vascular endothelial growth factor (VEGF), and platelet-endothelial cell adhesion molecule (CD31) in recurrent tumor tissue. The Western blot was used to detect the protein expression levels of angiopoietin-2 (ANG-2), VEGF, phosphorylated-protein kinase B (p-Akt), protein kinase B (Akt), phosphorylated-phosphatidylinositol 3-kinase (p-PI3K), and phosphatidylinositol 3-kinase (PI3K) in recurrent tumor tissue. ResultsBefore treatment, there were no statistical differences in tumor volume, tumor weight, and body mass among the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group compared to the model group, indicating model stability. After treatment, compared with those in the model group, the tumor volume and tumor weight in the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group were significantly reduced (P<0.01), showing dose dependency. Meanwhile, there were no significant differences in body weight among the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group compared to the model group. HE staining showed that compared with that in the model group, tumor tissue in the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group had loosely arranged cells, increased intercellular spaces, small and shriveled nuclei, light staining, fewer mitotic figures and atypical nuclei, and increased necrotic areas. IHC showed that compared with those of the model group, the positive rates of Ki67, VEGF, and CD31 in the recurrent tumor tissue of the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group were significantly reduced (P<0.01) in a dose-dependent manner. Western blot results showed that compared with those of the model group, the protein expression levels of ANG-2 and VEGF in the recurrent tumor tissue of the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group were significantly downregulated (P<0.05, P<0.01), and the p-Akt/Akt and p-PI3K/PI3K ratios were significantly decreased in a dose-dependent manner (P<0.05, P<0.01). ConclusionXianlian Jiedu prescription significantly inhibits the recurrence of CRC in mice after subcutaneous tumor surgery. The mechanism may involve regulating the PI3K/Akt pathway and downregulating key angiogenic proteins such as ANG-2, VEGF, and CD31.
2.Research progress on the association between periodontitis and inflammatory bowel disease
SHEN Yue ; QIAN Jun ; YAN Fuhua
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(6):466-473
Periodontitis is a chronic inflammatory disease of the periodontal supporting tissues caused by plaque microorganisms, whereas inflammatory bowel disease (IBD) is a chronic inflammatory disease characterized by gastrointestinal tract damage. Studies have revealed a close association between periodontitis and IBD, and gut microbiota has been shown to play an important role in the development of IBD. When the gut microbiota is disturbed, it leads to intestinal barrier disruption, triggers immune-inflammatory responses, and influences IBD progression. There are significant differences between the salivary microbiota of periodontitis patients and healthy individuals, and periodontal pathogens can enter the intestinal tract with saliva and participate in the development of IBD by influencing the interactions between gut microbiota composition, immune responses, metabolite production, and intestinal barrier function. Current gut microbiota-targeted intervention strategies, such as fecal microbiota transplantation (FMT) and probiotic supplementation, have shown potential therapeutic value in the treatment of periodontitis. These approaches may exert synergistic effects on both periodontitis and IBD through microbiota modulation. This review summarizes research progress on the relationship between periodontitis and IBD to provide a foundation for the prevention and treatment of these two diseases.
3.Analysis of Quality Difference Factors of Perillae Caulis Based on Chemometrics Combined with TOPSIS Model
Maoqing WANG ; Sha CHEN ; Qian MA ; Jun ZHANG ; Qingxia XU ; Cong GUO ; Rui SHEN ; Yan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):168-175
ObjectiveTo explore quality difference factors of Perillae Caulis based on the contents of multiple chemical components and comprehensively evaluate the quality. MethodsA total of 32 batches of Perillae Caulis samples were collected from 12 producing areas such as Hebei, Anhui and Guangdong, and their diameter range, epidermis color and producing areas were recorded. Total flavonoids, total phenols, volatile oils, 5 active components and 84 volatile components in 32 batches of samples were quantitatively or semi-quantitatively determined by colorimetry, ultra performance liquid chromatography-photodiode array detector(UPLC-PDA) and gas chromatography-mass spectrometry(GC-MS). Then the differences between the contents of these components were analyzed by principal component analysis(PCA) and non-parametric test. According to the weights of the index components determined by PCA model, entropy weight-technique for order preference by similarity to ideal solution(TOPSIS) model was constructed to evaluate the quality of Perillae Caulis with different characters and origins. ResultsThere were significant differences in the composition of Perillae Caulis with different diameters, epidermis colors and producing areas, and 9 differential components were screened out, including 6 index constituents(total flavonoids, total phenols, caffeic acid, scutellarin, rosmarinic acid and luteolin) and 3 volatile components(caryophyllene oxide, (-)-humulene epoxide Ⅱ, 14-hydroxycaryophyllene), of which 6 index constituents were higher in samples with small diameter, purple-brown epidermis and southern origin, while the contents of 3 volatile components were higher in samples with large diameter, dark-brown epidermis and northern origin. A significant difference was shown in the model scores of different diameters, epidermis colors and origins(P<0.05), and the scores of Perillae Caulis with small diameter and purple-brown epidermis from southern area, especially Guangdong, had a high score. ConclusionThere are significant differences in the composition and content of chemical constituents between different diameters, epidermal colors and production areas of Perillae Caulis, samples showing small diameter, owing purple-brown epidermis, and originating from Guangdong were of higher-quality due to their higher content of 8 key indices.
4.Application of Gas Chromatography Ion Mobility Spectrometry Technology Combined with Chemometric Methods in Identification of Foeniculi Fructus from Haiyuan Region
Xiurong TIAN ; Hao WANG ; Kejing PANG ; Penglong YU ; Xia LIU ; Mengyue SHEN ; Xianglin JIANG ; Yonghua LI ; Zhihong LI ; Hongqiong DING ; Qin YANG ; Xingying LI ; Qian XIONG ; Guochao WAN ; Yuexiang MA ; Zhenping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):184-192
ObjectiveTo establish a geographical origin identification model for Foeniculi Fructus from Haiyuan, providing a new technical reference for the protection of Haiyuan's geo-authentic medicinal materials and its designation as a national geographical indication agricultural product. MethodsSamples of Foeniculi Fructus were collected from eight producing areas, including Minqin (Gansu), Bozhou (Anhui), Qingdao (Shandong), Dezhou (Shandong), Urumqi (Xinjiang), Nujiang (Yunnan), Gutuo (Inner Mongolia), and Haiyuan (Ningxia). Gas chromatography-ion mobility spectrometry (GC-IMS) was used to detect the volatile organic compounds (VOCs) in samples from these geographic origins. VOCs were qualitatively analyzed through dual matching with the National Institute of Standards and Technology (NIST) mass spectral database and the IMS drift time database. Using the Reporter module and Gallery Plot visualization tools within the LAV analytical platform, VOC fingerprint profiles characterizing geographic origins were constructed. A non-targeted analytical strategy was adopted, and 97 VOCs detected via GC-IMS were subjected to principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) based on their differential distribution patterns to construct an origin identification model for Foeniculi Fructus from Haiyuan region. Key discriminative markers were screened using variable importance in projection (VIP) values greater than 1. ResultsA total of 97 VOCs were identified, including alcohols, aldehydes, ketones, esters, organic acids, terpenoids, ethers, alkenes, and benzenes. The PLS-DA model, based on VOCs data obtained by GC-IMS, effectively distinguished Foeniculi Fructus in Haiyuan region from those of other origins. During cross-validation, the model achieved a prediction parameter (Q2) of 0.976 and a goodness-of-fit parameter (R2) of 0.936, with no overfitting observed in permutation testing. Twelve key flavor markers with VIP > 1 were identified as characteristic indicators of Haiyuan origin. ConclusionA stable and highly predictive origin identification model for Foeniculi Fructus from Haiyuan was successfully established using GC-IMS technology, PLS-DA, and VIP-based marker screening. This model provides a novel technical strategy for accurately distinguishing Foeniculi Fructus in Haiyuan region from other regional varieties and offers new technical support for its protection as a geo-authentic medicinal material and a nationally designated geographical indication agricultural product in China.
5.Analysis of Quality Difference Factors of Perillae Caulis Based on Chemometrics Combined with TOPSIS Model
Maoqing WANG ; Sha CHEN ; Qian MA ; Jun ZHANG ; Qingxia XU ; Cong GUO ; Rui SHEN ; Yan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):168-175
ObjectiveTo explore quality difference factors of Perillae Caulis based on the contents of multiple chemical components and comprehensively evaluate the quality. MethodsA total of 32 batches of Perillae Caulis samples were collected from 12 producing areas such as Hebei, Anhui and Guangdong, and their diameter range, epidermis color and producing areas were recorded. Total flavonoids, total phenols, volatile oils, 5 active components and 84 volatile components in 32 batches of samples were quantitatively or semi-quantitatively determined by colorimetry, ultra performance liquid chromatography-photodiode array detector(UPLC-PDA) and gas chromatography-mass spectrometry(GC-MS). Then the differences between the contents of these components were analyzed by principal component analysis(PCA) and non-parametric test. According to the weights of the index components determined by PCA model, entropy weight-technique for order preference by similarity to ideal solution(TOPSIS) model was constructed to evaluate the quality of Perillae Caulis with different characters and origins. ResultsThere were significant differences in the composition of Perillae Caulis with different diameters, epidermis colors and producing areas, and 9 differential components were screened out, including 6 index constituents(total flavonoids, total phenols, caffeic acid, scutellarin, rosmarinic acid and luteolin) and 3 volatile components(caryophyllene oxide, (-)-humulene epoxide Ⅱ, 14-hydroxycaryophyllene), of which 6 index constituents were higher in samples with small diameter, purple-brown epidermis and southern origin, while the contents of 3 volatile components were higher in samples with large diameter, dark-brown epidermis and northern origin. A significant difference was shown in the model scores of different diameters, epidermis colors and origins(P<0.05), and the scores of Perillae Caulis with small diameter and purple-brown epidermis from southern area, especially Guangdong, had a high score. ConclusionThere are significant differences in the composition and content of chemical constituents between different diameters, epidermal colors and production areas of Perillae Caulis, samples showing small diameter, owing purple-brown epidermis, and originating from Guangdong were of higher-quality due to their higher content of 8 key indices.
6.Application of Gas Chromatography Ion Mobility Spectrometry Technology Combined with Chemometric Methods in Identification of Foeniculi Fructus from Haiyuan Region
Xiurong TIAN ; Hao WANG ; Kejing PANG ; Penglong YU ; Xia LIU ; Mengyue SHEN ; Xianglin JIANG ; Yonghua LI ; Zhihong LI ; Hongqiong DING ; Qin YANG ; Xingying LI ; Qian XIONG ; Guochao WAN ; Yuexiang MA ; Zhenping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):184-192
ObjectiveTo establish a geographical origin identification model for Foeniculi Fructus from Haiyuan, providing a new technical reference for the protection of Haiyuan's geo-authentic medicinal materials and its designation as a national geographical indication agricultural product. MethodsSamples of Foeniculi Fructus were collected from eight producing areas, including Minqin (Gansu), Bozhou (Anhui), Qingdao (Shandong), Dezhou (Shandong), Urumqi (Xinjiang), Nujiang (Yunnan), Gutuo (Inner Mongolia), and Haiyuan (Ningxia). Gas chromatography-ion mobility spectrometry (GC-IMS) was used to detect the volatile organic compounds (VOCs) in samples from these geographic origins. VOCs were qualitatively analyzed through dual matching with the National Institute of Standards and Technology (NIST) mass spectral database and the IMS drift time database. Using the Reporter module and Gallery Plot visualization tools within the LAV analytical platform, VOC fingerprint profiles characterizing geographic origins were constructed. A non-targeted analytical strategy was adopted, and 97 VOCs detected via GC-IMS were subjected to principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) based on their differential distribution patterns to construct an origin identification model for Foeniculi Fructus from Haiyuan region. Key discriminative markers were screened using variable importance in projection (VIP) values greater than 1. ResultsA total of 97 VOCs were identified, including alcohols, aldehydes, ketones, esters, organic acids, terpenoids, ethers, alkenes, and benzenes. The PLS-DA model, based on VOCs data obtained by GC-IMS, effectively distinguished Foeniculi Fructus in Haiyuan region from those of other origins. During cross-validation, the model achieved a prediction parameter (Q2) of 0.976 and a goodness-of-fit parameter (R2) of 0.936, with no overfitting observed in permutation testing. Twelve key flavor markers with VIP > 1 were identified as characteristic indicators of Haiyuan origin. ConclusionA stable and highly predictive origin identification model for Foeniculi Fructus from Haiyuan was successfully established using GC-IMS technology, PLS-DA, and VIP-based marker screening. This model provides a novel technical strategy for accurately distinguishing Foeniculi Fructus in Haiyuan region from other regional varieties and offers new technical support for its protection as a geo-authentic medicinal material and a nationally designated geographical indication agricultural product in China.
7.Comparison of the efficacy of heat and acid elution methods for IgG anti-M and anti-Ku
Qunjuan ZENG ; Huaiying KANG ; Dong XIANG ; Wei SHEN ; Chengrui QIAN ; Zhongying WANG ; Guoqin GONG
Chinese Journal of Blood Transfusion 2025;38(7):964-968
Objective: To compare the efficacy of heat and acid elution methods for IgG anti-M and anti-Ku. Methods: Ten samples with IgG anti-M and two samples with IgG anti-Ku were selected and standardized to a titer of 64. These antibodies underwent overnight absorption at 4℃ with O-type MM and kk-type erythrocytes, and then heat and acid elution methods were used on the absorbed sensitized erythrocytes respectively by detecting the titer of anti-M and anti-Ku in the eluate to compare the differences in the elution efficiency of IgG anti-M and anti-Ku between the two elution methods. Results: In heat elution tests, all 10 anti-M samples showed positive results with titers ranging from 8 to 64, while 2 anti-Ku samples yielded negative results. In acid elution tests, all 10 anti-M samples demonstrated negative results, whereas both anti-Ku (n=2) samples exhibited positive reactions with consistent titers of 32. Following acid elution with subsequent heat elution, 8 of 10 anti-M samples showed positive results with titers ranging from 8 to 32, while 2 remained negative. Both anti-Ku samples demonstrated positive with titers of 4. Conclusion: Heat elution demonstrated superior efficiency for IgG anti-M compared to acid elution, whereas acid elution showed greater efficacy for IgG anti-Ku than heat elution.
8.Comparison of the efficacy of heat and acid elution methods for IgG anti-M and anti-Ku
Qunjuan ZENG ; Huaiying KANG ; Dong XIANG ; Wei SHEN ; Chengrui QIAN ; Zhongying WANG ; Guoqin GONG
Chinese Journal of Blood Transfusion 2025;38(7):964-968
Objective: To compare the efficacy of heat and acid elution methods for IgG anti-M and anti-Ku. Methods: Ten samples with IgG anti-M and two samples with IgG anti-Ku were selected and standardized to a titer of 64. These antibodies underwent overnight absorption at 4℃ with O-type MM and kk-type erythrocytes, and then heat and acid elution methods were used on the absorbed sensitized erythrocytes respectively by detecting the titer of anti-M and anti-Ku in the eluate to compare the differences in the elution efficiency of IgG anti-M and anti-Ku between the two elution methods. Results: In heat elution tests, all 10 anti-M samples showed positive results with titers ranging from 8 to 64, while 2 anti-Ku samples yielded negative results. In acid elution tests, all 10 anti-M samples demonstrated negative results, whereas both anti-Ku (n=2) samples exhibited positive reactions with consistent titers of 32. Following acid elution with subsequent heat elution, 8 of 10 anti-M samples showed positive results with titers ranging from 8 to 32, while 2 remained negative. Both anti-Ku samples demonstrated positive with titers of 4. Conclusion: Heat elution demonstrated superior efficiency for IgG anti-M compared to acid elution, whereas acid elution showed greater efficacy for IgG anti-Ku than heat elution.
9.Clinical Application and Pharmacological Mechanism of Sishenwan in Treatment of Ulcerative Colitis: A Review
Keqiu YAN ; Xiaoyu ZHANG ; Sifeng JIA ; Yuyu DUAN ; Zixing QIAN ; Yifan CAI ; Junyi SHEN ; Wenjie XIAO ; Xinkun BAO ; Guangjun SUN ; Aizhen LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):261-270
Ulcerative colitis (UC), a chronic, non-specific inflammatory bowel disease with typical symptoms such as abdominal pain, diarrhea, and bloody stools, demonstrates a high relapse rate and difficulty in curing. Sishenwan, first recorded in Internal Medicine Abstract (Nei Ke Zhai Yao), are a classic prescription for treating diarrhea caused by deficiency of the spleen and kidney Yang. The core therapeutic principle of Sishenwan is warming and tonifying the spleen and kidney, and astringing the intestine and stopping diarrhea. In recent years, Sishenwan have demonstrated distinct advantages in the clinical treatment of UC. The pathogenesis of UC involves multiple factors, including immune dysregulation and gut microbiota imbalance. Although Western medicine is effective in the short term, its side effects, high relapse rate, and resistance associated with long-term use pose substantial challenges. Sishenwan have shown excellent clinical outcomes in the treatment of UC due to deficiency of the spleen and kidney Yang. Modern clinical studies indicate that Sishenwan, used alone or in combination with Western medicine or other Chinese medicine compound prescriptions, significantly improve the clinical efficacy in treating UC due to deficiency of the spleen and kidney Yang. Sishenwan effectively alleviate core symptoms such as mucus, pus, and blood in stools, and persistent abdominal pain, reduce Mayo scores and the relapse rate, and improve patients' quality of life. Research on the material basis reveals that Sishenwan contain multiple active ingredients such as psoralen, isopsoralen, and evodiamine. Mechanism studies indicate that Sishenwan inhibit the inflammatory cascade reactions by regulating the signal network through multiple targets. Sishenwan regulate cellular immunity and restore intestinal immune homeostasis. At the microecological level, Sishenwan promote the intestinal barrier repair through the "microbiota-metabolism-immunity" axis. The current research still needs to be deepened in aspects such as the mining of specific biomarkers for syndromes and the exploration of the collaborative mechanism of traditional Chinese and Western medicine. In the future, a full-chain system covering syndrome differentiation, targeting, and monitoring needs to be constructed for promoting the paradigm transformation of Sishenwan into precision drugs. This review systematically explains the treatment mechanism of Sishenwan regarding the combination of disease and syndrome and its multi-target regulatory characteristics, providing a theoretical basis and transformation direction for the treatment of UC with integrated traditional Chinese and Western medicine.
10.Clinical Application and Pharmacological Mechanism of Sishenwan in Treatment of Ulcerative Colitis: A Review
Keqiu YAN ; Xiaoyu ZHANG ; Sifeng JIA ; Yuyu DUAN ; Zixing QIAN ; Yifan CAI ; Junyi SHEN ; Wenjie XIAO ; Xinkun BAO ; Guangjun SUN ; Aizhen LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):261-270
Ulcerative colitis (UC), a chronic, non-specific inflammatory bowel disease with typical symptoms such as abdominal pain, diarrhea, and bloody stools, demonstrates a high relapse rate and difficulty in curing. Sishenwan, first recorded in Internal Medicine Abstract (Nei Ke Zhai Yao), are a classic prescription for treating diarrhea caused by deficiency of the spleen and kidney Yang. The core therapeutic principle of Sishenwan is warming and tonifying the spleen and kidney, and astringing the intestine and stopping diarrhea. In recent years, Sishenwan have demonstrated distinct advantages in the clinical treatment of UC. The pathogenesis of UC involves multiple factors, including immune dysregulation and gut microbiota imbalance. Although Western medicine is effective in the short term, its side effects, high relapse rate, and resistance associated with long-term use pose substantial challenges. Sishenwan have shown excellent clinical outcomes in the treatment of UC due to deficiency of the spleen and kidney Yang. Modern clinical studies indicate that Sishenwan, used alone or in combination with Western medicine or other Chinese medicine compound prescriptions, significantly improve the clinical efficacy in treating UC due to deficiency of the spleen and kidney Yang. Sishenwan effectively alleviate core symptoms such as mucus, pus, and blood in stools, and persistent abdominal pain, reduce Mayo scores and the relapse rate, and improve patients' quality of life. Research on the material basis reveals that Sishenwan contain multiple active ingredients such as psoralen, isopsoralen, and evodiamine. Mechanism studies indicate that Sishenwan inhibit the inflammatory cascade reactions by regulating the signal network through multiple targets. Sishenwan regulate cellular immunity and restore intestinal immune homeostasis. At the microecological level, Sishenwan promote the intestinal barrier repair through the "microbiota-metabolism-immunity" axis. The current research still needs to be deepened in aspects such as the mining of specific biomarkers for syndromes and the exploration of the collaborative mechanism of traditional Chinese and Western medicine. In the future, a full-chain system covering syndrome differentiation, targeting, and monitoring needs to be constructed for promoting the paradigm transformation of Sishenwan into precision drugs. This review systematically explains the treatment mechanism of Sishenwan regarding the combination of disease and syndrome and its multi-target regulatory characteristics, providing a theoretical basis and transformation direction for the treatment of UC with integrated traditional Chinese and Western medicine.


Result Analysis
Print
Save
E-mail