1.Analysis of Quality Uniformity of Hengzhi Kechuan Capsules Based on HPLC-DAD-CAD
Qian MA ; An LIU ; Qingxia XU ; Cong GUO ; Jun ZHANG ; Maoqing WANG ; Xiaodi KOU ; Yan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):168-174
ObjectiveTo establish the fingerprints of 15 batches of Hengzhi Kechuan capsules, to quantitatively analyze 10 index components, and to evaluate the quality uniformity of samples from different batches. MethodsThe fingerprints and quantitative analysis of Hengzhi Kechuan capsules were established by a combination method of high performance liquid chromatography coupled with diode array detector and charged aerosol detector(HPLC-DAD-CAD), adenosine, guanosine, vanillic acid, safflomin A, agarotetrol, naringin, hesperidin, militarine, ginsenoside Rb1, and glycyrrhizic acid were selected as quality attribute indexes. A total of 15 batches of Hengzhi Kechuan capsules from 2022 to 2024(3 boxes per batch) were qualitatively and quantitatively analyzed, and the quality uniformity level of the manufacturers was characterized by parameters of intra-batch consistency(PA) and inter-batch consistency(PB). The homogeneity and difference of quality attribute indexes of samples from different years were analyzed by heatmap clustering analysis. ResultsHPLC fingerprints and quantitative method of Hengzhi Kechuan capsules were established, and the methods could be used for qualitative and quantitative analysis of this preparation, which was found to be stable and reliable by method validation. The similarity of fingerprints of 15 batches of samples was 0.887-0.975, a total of 13 common peaks were calibrated, and 10 common peaks were designated, all of which were quality attribute index components. The results of quantitative analysis showed that the contents of the above 10 ingredients in the samples were 0.038-0.078, 0.115-0.251, 0.007-0.018, 0.291-0.673, 0.122-0.257, 0.887-1.905, 1.841-3.364, 1.412-2.450, 2.207-3.112, 0.650-1.161, respectively. And the contents of ginsenoside Rb1 and glycyrrhizic acid met the limit requirements in the 2020 edition of Chinese Pharmacopoeia. For the samples from 15 batches, the PA values of the 10 index components were all <10%, indicating good intra-batch homogeneity, and the PB values ranged from 33.86% to 92.97%, suggesting that the inter-batch homogeneity was poor. Heatmap clustering analysis showed that the samples from different years were clustered into separate categories, and adenosine, guanosine, safflomin A, naringin, hesperidin and agarotetrol were the main differential components. ConclusionThe intra-annual quality uniformity of Hengzhi Kechuan capsules is good and the inter-annual quality uniformity is insufficient, which may be related to the quality difference of Pinellinae Rhizoma Praeparatum, Carthami Flos, Citri Sarcodactylis Fructus, Citri Reticulatae Pericarpium, Aquilariae Lignum Resinatum, Citri Fructus, etc. In this study, the fingerprint and multi-indicator determination method of Hengzhi Kechuan capsules was established, which can be used for more accurate and efficient quality control and standardization enhancement.
2.Screening key genes of PANoptosis in hepatic ischemia-reperfusion injury based on bioinformatics
Lirong ZHU ; Qian GUO ; Jie YANG ; Qiuwen ZHANG ; Guining HE ; Yanqing YU ; Ning WEN ; Jianhui DONG ; Haibin LI ; Xuyong SUN
Organ Transplantation 2025;16(1):106-113
Objective To explore the relationship between PANoptosis and hepatic ischemia-reperfusion injury (HIRI), and to screen the key genes of PANoptosis in HIRI. Methods PANoptosis-related differentially expressed genes (PDG) were obtained through the Gene Expression Omnibus database and GeneCards database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore the biological pathways related to PDG. A protein-protein interaction network was constructed. Key genes were selected, and their diagnostic value was assessed and validated in the HIRI mice. Immune cell infiltration analysis was performed based on the cell-type identification by estimating relative subsets of RNA transcripts. Results A total of 16 PDG were identified. GO analysis showed that PDG were closely related to cellular metabolism. KEGG analysis indicated that PDG were mainly enriched in cellular death pathways such as apoptosis and immune-related signaling pathways such as the tumor necrosis factor signaling pathway. GSEA results showed that key genes were mainly enriched in immune-related signaling pathways such as the mitogen-activated protein kinase (MAPK) signaling pathway. Two key genes, DFFB and TNFSF10, were identified with high accuracy in diagnosing HIRI, with areas under the curve of 0.964 and 1.000, respectively. Immune infiltration analysis showed that the control group had more infiltration of resting natural killer cells, M2 macrophages, etc., while the HIRI group had more infiltration of M0 macrophages, neutrophils, and naive B cells. Real-time quantitative polymerase chain reaction results showed that compared with the Sham group, the relative expression of DFFB messenger RNA in liver tissue of HIRI group mice increased, and the relative expression of TNFSF10 messenger RNA decreased. Cibersort analysis showed that the infiltration abundance of naive B cells was positively correlated with DFFB expression (r=0.70, P=0.035), and the infiltration abundance of M2 macrophages was positively correlated with TNFSF10 expression (r=0.68, P=0.045). Conclusions PANoptosis-related genes DFFB and TNFSF10 may be potential biomarkers and therapeutic targets for HIRI.
3.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
4.Diagnosis and treatment of cirrhotic portal hypertension with spontaneous portosystemic shunt: Current status and prospects
Yaxin CHEN ; Wen GUO ; Kaige LIU ; Qian LI ; Mingxin ZHANG
Journal of Clinical Hepatology 2025;41(1):176-182
Liver cirrhosis is the terminal stage of various chronic liver diseases, with the main clinical manifestation of portal hypertension, which can lead to spontaneous portosystemic shunt (SPSS). SPSS is very common in clinical practice and is closely associated with the prognosis of patients. This article summarizes the recent studies in the clinical significance of cirrhotic portal hypertension with SPSS, the controversies in studies, and the current status and future prospects and challenges of treatment, in order to provide a reference for the standardized diagnosis and treatment of portal hypertension.
5.Discussion on the accuracy of ovarian tumor diagnosis based on artificial intelligence with different scanning methods
Haizheng WANG ; Li FENG ; Sen WANG ; Huimin GUO ; Fanguo MENG
Chinese Journal of Radiological Health 2025;34(1):77-83
Objective To explore the accuracy of artificial intelligence-based diagnosis of ovarian malignant tumors and the identification of benign and malignant tumors under transabdominal scanning and transvaginal scanning methods. Methods A dataset of transabdominal and transvaginal two-dimensional ultrasound images was used and the images were preprocessed to enhance quality. The region of interest was segmented and divided into a training set and a test set. A convolutional neural network (CNN) was trained on the images in the training set, and the accuracy of the model on the test set was calculated. Results Transvaginal scanning was 14% more accurate in diagnosing malignant ovarian tumors than transabdo-minal scanning on the test set. For identifying the benign and malignant ovarian tumors containing cystic components, a mixture of transvaginal and transabdominal scanning increased the accuracy by 9.7% over transabdominal scanning alone. Conclusion CNN can identify ovarian malignant tumors under both scanning methods, but the accuracy of transvaginal scanning is higher than that of transabdominal scanning, and the CNN model has a higher accuracy in identifying benign and malignant ovarian tumors under transvaginal scanning.
6.A Randomized Controlled Trial of Stone Needle Thermocompression and Massage for Treating Chronic Musculoskeletal Pain in the Shoulder and Back:A Secondary Analysis of Muscle Elasticity as a Mediator
Jingjing QIAN ; Yuanjing LI ; Li LI ; Yawei XI ; Ying WANG ; Cuihua GUO ; Jiayan ZHOU ; Yaxuan SUN ; Shu LIU ; Guangjing YANG ; Na YUAN ; Xiaofang YANG
Journal of Traditional Chinese Medicine 2025;66(9):935-940
ObjectiveTo evaluate the effectiveness of stone needle thermocompression and massage compared to flurbiprofen gel patch in relieving chronic musculoskeletal pain in the shoulder and back, and to explore the potential mediating mechanism through muscle elasticity. MethodsA total of 120 patients with chronic musculoskeletal pain in the shoulder and back were randomly assigned to either stone needle group or flurbiprofen group, with 60 patients in each. The stone needle group received stone needle thermocompression and massage for 30 minutes, three times per week; the flurbiprofen group received flurbiprofen gel patch twice daily. Both groups were treated for 2 weeks. Pain improvement, as the primary outcome, was assessed using the Global Pain Scale (GPS) at baseline, after 2 weeks of treatment, and again 2 weeks post-treatment. To explore potential mechanisms, a mediator analysis was conducted by measuring changes in superficial and deep muscle elasticity using musculoskeletal ultrasound at baseline and after the 2-week treatment period. ResultsThe stone needle group showed significantly greater pain relief than the flurbiprofen group 2 weeks post-treatment. After adjusting for confounders related to pain duration, the between-group mean difference was -8.8 [95% CI (-18.2, -0.7), P<0.05]. Part of the therapeutic effect was mediated by changes in deep muscle elasticity, with a mediation effect size of -1.5 [95% CI (-2.0, -0.9), P = 0.024], accounting for 17.9% of the total effect. ConclusionStone needle thermocompression and massage can effectively relieve chronic musculoskeletal pain in the shoulder and back, partly through a mediating effect of improved deep muscle elasticity.
7.Correlation between residual cholesterol and hearing loss in noise-exposed workers
Jing QIAN ; Aichu YANG ; Minghui XIAO ; Danyan CAO ; Jijun GUO ; Xiufeng LU
China Occupational Medicine 2025;52(1):40-44
Objective To analyze the effect of residual cholesterol (RC) on hearing loss in noise-exposed workers. Methods A total of 3 412 workers engaged in noise operation work in an underground railway enterprise were selected as the research subjects using the judgment sampling method. Their occupational health examination data were collected to analyze the relationship between RC and hearing loss. Results The noise intensity of workplace in the underground rail enterprise was 80.0-85.0 (81.4±3.2) dB(A). The detection rate of hearing loss was 20.2% (691/3 412). The rates of abnormal total cholesterol, triacylglycerol, high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol were 35.6%, 25.7%, 9.5% and 42.4%, respectively. The median and the 25th and 75th percentiles [M(P25,P75)] of RC level were 0.24 (0.15, 0.37) mmol/L. The levels of total cholesterol, triacylglycerol and RC of workers in hearing loss group were higher than those in normal hearing group [M(P25,P75): 4.91(4.37, 5.58) vs 4.84(4.30, 5.46) mmol/L, 1.29(0.91, 1.93) vs 1.16(0.82, 1.67) mmol/L, 0.26(0.16, 0.41) vs 0.24(0.14, 0.37) mmol/L, all P<0.05]. The detection rate of hearing loss in abnormal triglyceride group was higher than that in normal triglyceride group (24.8% vs 18.7%, P<0.01), and the detection rate of hearing loss in abnormal HDL-C group was higher than that in normal HDL-C group (25.0% vs 19.8%, P<0.05). The higher the serum RC level, the higher the detection rate of hearing loss (P<0.01). Multivariate logistic regression result showed that individual with older age, longer work time and higher serum RC level had higher risk of hearing abnormality (all P<0.05), and the risk of hearing abnormality was higher in patients with abnormal fasting blood glucose than patients with normal faseing blood glucose (P<0.05) after controlling for confounding factors such as gender, alcohol consumption, body mass index, and elevated blood pressure. However, abnormal triacylglycerol and HDL-C levels were not significantly related to the risk of hearing abnormality (both P>0.05). Conclusion Serum RC levels are an independent risk factor for hearing loss among noise-exposed workers exposed to noise level of 80.0-85.0 dB(A) in the workplace.
8.Metformin exerts a protective effect on articular cartilage in osteoarthritis rats by inhibiting the PI3K/AKT/mTOR pathway
Tianjie XU ; Jiaxin FAN ; Xiaoling GUO ; Xiang JIA ; Xingwang ZHAO ; Kainan LIU ; Qian WANG
Chinese Journal of Tissue Engineering Research 2025;29(5):1003-1012
BACKGROUND:Studies have shown that metformin has anti-inflammatory,anti-tumor,anti-aging and vasoprotective effects,and can inhibit the progression of osteoarthritis,but its specific mechanism of action remains unclear. OBJECTIVE:To investigate the mechanism of metformin on cartilage protection in a rat model of osteoarthritis. METHODS:Forty male Sprague-Dawley rats were randomly divided into four groups(n=10 per group):blank,control,sham-operated,and metformin groups.The blank group did not undergo any surgery.In the sham-operated group,the joint cavity was exposed.In the model group and the metformin group,the modified Hulth method was used to establish the osteoarthritis model.At 1 day after modeling,the rats in the metformin group were given 200 mg/kg/d metformin by gavage,and the model,blank,and sham-operated groups were given normal saline by gavage.Administration in each group was given for 4 weeks consecutively.Hematoxylin-eosin staining,toluidine blue staining,and safranin O-fast green staining were used to observe the morphological structure of rat knee joints.Immunohistochemical staining and western blot were used to detect the protein expression of SOX9,type Ⅱ collagen,a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS5),Beclin1,P62,phosphatidylinositol 3-kinase(PI3K),p-PI3K,protein kinase B(AKT),p-AKT,mammalian target of rapamycin(Mtor),and p-Mtor in rat cartilage tissue. RESULTS AND CONCLUSION:The results of hematoxylin-eosin,toluidine blue and safranin O-fast green staining showed smooth cartilage surface of the knee joints and normal histomorphology in the blank group and the sham-operated group,while in the model group,there was irregular cartilage surface of the knee joint and cartilage damage,with a decrease in the number of chondrocytes and the content of proteoglycans in the cartilage matrix.In the metformin group,there was a significant improvement in the damage to the structure of the cartilage in the knee joints of the rats,and the cartilage surface tended to be smooth,with an increase in the number of chondrocytes and the content of proteoglycans in the cartilage matrix.Immunohistochemistry staining and western blot results showed that compared with the control and sham-operated groups,the expression of SOX9,type Ⅱ collagen,and Beclin1 proteins in the cartilage tissue of rats in the model group was significantly decreased(P<0.05).Conversely,the expression of ADAMTS5,P62,as well as p-PI3K,p-AKT,and p-Mtor proteins was significantly increased(P<0.05).Furthermore,compared with the model group,the expression of SOX9,type Ⅱ collagen,and Beclin1 proteins in the cartilage tissue of rats in the metformin group was significantly increased(P<0.05),while the expression of ADAMTS5,P62,as well as p-PI3K,p-AKT,and p-Mtor proteins was significantly decreased(P<0.05).To conclude,Metformin can improve the autophagy activity of chondrocytes and reduce the degradation of cartilage matrix in osteoarthritis rats by inhibiting the activation of PI3K/AKT/Mtor signaling pathway,thus exerting a protective effect on articular cartilage.
9.Application of Ferroptosis Regulation in Chronic Atrophic Gastritis Based on Spleen Deficiency and Turbid Toxin
Yuxi GUO ; Xuemei JIA ; Jie WANG ; Yanru CAI ; Pengli DU ; Yao DU ; Diangui LI ; Qian YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):279-285
Chronic atrophic gastritis (CAG), a common digestive system disease, has an unclear pathogenesis. Currently, it is mostly believed to be related to Helicobacter pylori (Hp) infection, immune factors, dietary factors, bile reflux, long-term use of antibiotics and anti-inflammatory drugs, and other factors. Ferroptosis is a regulated cell death mechanism that is iron-dependent and characterized by disruption of iron metabolism and accumulation of lipid peroxides. More and more studies have found that ferroptosis is closely related to the onset of CAG. Professor LI Diangui, a master of traditional Chinese medicine, first proposed the turbid toxin theory, which holds that spleen deficiency and turbid toxin is the main pathogenic mechanism of CAG. Abnormal iron metabolism regulation is a prerequisite for the accumulation of turbid toxin in CAG, and ferroptosis is in accordance with the pathogenic mechanism (spleen deficiency and turbid toxin) of CAG. This article explores the pathological mechanism of spleen deficiency and turbid toxin in CAG from the perspectives of iron metabolism, oxidative stress, and lipid peroxidation, providing theoretical support of traditional Chinese medicine for the modern research on CAG. It enriches the modern scientific connotation of the turbid toxicity theory and provides new ideas and breakthrough points for the clinical treatment of CAG.
10.Application of Ferroptosis Regulation in Chronic Atrophic Gastritis Based on Spleen Deficiency and Turbid Toxin
Yuxi GUO ; Xuemei JIA ; Jie WANG ; Yanru CAI ; Pengli DU ; Yao DU ; Diangui LI ; Qian YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):279-285
Chronic atrophic gastritis (CAG), a common digestive system disease, has an unclear pathogenesis. Currently, it is mostly believed to be related to Helicobacter pylori (Hp) infection, immune factors, dietary factors, bile reflux, long-term use of antibiotics and anti-inflammatory drugs, and other factors. Ferroptosis is a regulated cell death mechanism that is iron-dependent and characterized by disruption of iron metabolism and accumulation of lipid peroxides. More and more studies have found that ferroptosis is closely related to the onset of CAG. Professor LI Diangui, a master of traditional Chinese medicine, first proposed the turbid toxin theory, which holds that spleen deficiency and turbid toxin is the main pathogenic mechanism of CAG. Abnormal iron metabolism regulation is a prerequisite for the accumulation of turbid toxin in CAG, and ferroptosis is in accordance with the pathogenic mechanism (spleen deficiency and turbid toxin) of CAG. This article explores the pathological mechanism of spleen deficiency and turbid toxin in CAG from the perspectives of iron metabolism, oxidative stress, and lipid peroxidation, providing theoretical support of traditional Chinese medicine for the modern research on CAG. It enriches the modern scientific connotation of the turbid toxicity theory and provides new ideas and breakthrough points for the clinical treatment of CAG.

Result Analysis
Print
Save
E-mail