1.The Development and Application of Chatbots in Healthcare: From Traditional Methods to Large Language Models
Zixing WANG ; Le QI ; Xiaodan LIAN ; Ziheng ZHOU ; Aiwei MENG ; Xintong WU ; Xiaoyuan GAO ; Yujie YANG ; Yiyang LIU ; Wei ZHAO ; Xiaolin DIAO
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1170-1178
With the rapid advancement of artificial intelligence technology, chatbots have shown great potential in the healthcare sector. From personalized health advice to chronic disease management and psychological support, chatbots have demonstrated significant advantages in improving the efficiency and quality of healthcare services. As the scope of their applications expands, the relationship between technological complexity and practical application scenarios has become increasingly intertwined, necessitating a more comprehensive evaluation of both aspects. This paper, from the perspective of he althcare applications, systematically reviews the technological pathways and development of chatbots in the medical field, providing an in-depth analysis of their performance across various medical scenarios. It thoroughly examines the advantages and limitations of chatbots, aiming to offer theoretical support for future research and propose feasible recommendations for the broader adoption of chatbot technologies in healthcare.
2.Diagnostic efficacy of optimized T-SPOT.TB in differentiating spinal tu-berculosis from other spinal infection
Ying ZHOU ; Xiao-Jiang HU ; Zhong-Jing JIANG ; Jun-Bao CHEN ; Guang ZHANG ; Hong-Qi ZHANG ; Yan-Bing LI ; Qi-Le GAO
Chinese Journal of Infection Control 2024;23(2):148-154
Objective To explore the efficacy of T-cell spot test of tuberculosis infection(T-SPOT.TB)in the differential diagnosis of spinal tuberculosis(STB),and optimize diagnostic efficacy through the optimal cut-off value of receiver operating characteristic(ROC)curve.Methods Clinical data of patients with spinal infection in a hospi-tal from January 2010 to May 2019 were collected,including preoperative T-SPOT.TB test results,white blood cell count,C-reactive protein,erythrocyte sedimentation rate,procalcitonin,and tuberculosis antibodies,etal.Clinical diagnosis was conducted based on diagnostic criteria.The sensitivity and specificity of T-SPOT.TB in preoperative diagnosis of STB and other spinal infection was analyzed,and the diagnostic efficacy of the optimized T-SPOT.TB indicators was evaluated.Results A total of 132 patients were included in this study,out of whom 78 patients(59.09%)were diagnosed with STB,and 54(40.91%)were diagnosed with non-tuberculosis(non-TB)spinal in-fection.The sensitivity and specificity of T-SPOT.TB in differential diagnosis of STB were 67.68%and 66.67%,respectively.Univariate logistic regression analysis showed that compared with non-TB spinal infection,the OR va-lue of T-SPOT.TB test in diagnosing STB was 4.188(95%CI:1.847-9.974,P<0.001).The optimized T-SPOT.TB evaluation index through ROC curve to determine the optimal cut-off values of ESAT-6,CFP-10,and CFP-10+ESAT-6 for differential diagnosis of STB and non-TB spinal infection were 12.5,19.5,and 36,respec-tively,and area under curve(AUC)values were 0.765 6,0.741 5,and 0.778 6,respectively,all with good diag-nostic efficacy.CFP-10+ESAT-6 had the highest AUC.CFP-10+ESAT-6 specific spot count had higher efficacy in the diagnosis of STB,with a diagnostic accuracy of 75.56%,higher than 67.42%of pre-optimized T-SPOT.TB.Conclusion T-SPOT.TB test has high diagnostic efficacy in differentiating STB from non-TB spinal infection.Posi-tivity in T-SPOT.TB test,especially with spot count of CFP-10+ESAT-6 over 36,indicates a higher likelihood of STB.
3.Changes in the microstructure and bone mineral density of vertebral tra-becular bone in the early stages of spinal Mycobacterium tuberculosis in-fection
Jun-Bao CHEN ; Yi LUO ; Nan-Jun XIONG ; Xiao-Jiang HU ; Chao-Feng GUO ; Qi-Le GAO ; Yan-Bing LI
Chinese Journal of Infection Control 2024;23(8):1001-1006
Objective To observe and compare the changes of vertebral bone mineral density(BMD)in the early stages of spinal Mycobacterium tuberculosis infection.Methods Patients who underwent spinal surgery at Xiangya Hospital,Central South University from January 1 to December 31,2023 were continuously enrolled(spinal tuber-culosis group),based on gender matching,non-spinal tuberculosis surgical patients treated for spinal stenosis were selected as the control group.Dual-energy X-ray scans were performed on the enrolled patients,difference in verte-bral BMD between two groups of patients was compared.An animal model of spinal Mycobacterium tuberculosis in-fection(referred to as the animal model)was constructed,differences in microstructure of trabecular bone between spinal tuberculosis group and control group was compared,and the bone volume/tissue volume(BV/TV),the thickness of trabecular bone(Tb.Th),the number of trabecular bone(Tb.N),and sparse density of trabecular(Tb.Sp)were used as evaluation indexes to further analyze the bone quality differences between the diseased verte-brae and the neighboring vertebrae.Results 69 patients were included in the spinal tuberculosis group and the con-trol group,respectively.The BMD of patients in the spinal tuberculosis group(0.793[0.712,0.869]g/cm2)was lower than that of the control group(0.907[0.800,1.020]g/cm2),difference was statistically significant(P<0.05).Microstructure of trabecular bone BV/TV([18.4±5.4]%),Tb.Th([0.124±0.010]mm)in the spinal tuberculosis group of animal model were significantly altered compared with BV/TV([22.6±3.2]%),Tb.Th([0.160±0.017]mm)in the control group(both P<0.05).In the spinal tuberculosis group,microstructure of diseased vetebral trabecular bone BV/TV([25.5±6.7]%)and Tb.N([1.871±0.443]/mm)were significantly lower than BV/TV([26.6±6.8]%)and Tb.N([1.969±0.454]/mm)in the neighboring vertebrae,both with statistically difference(both P<0.05).Conclusion In the early stages of spinal Mycobacterium tuberculosis infec-tion,microstructure of vertebral trabecular bone can be altered,leading to a decrease in BMD.
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5.Gut microbiota as a target for traditional Chinese medicine in the treatment of cardiovascular disease: potential mechanisms and therapy strategies
Wan-qi LE ; Jing-yu LIAO ; Yu-hao ZHANG ; Gao-song WU ; Wei-dong ZHANG
Acta Pharmaceutica Sinica 2023;58(8):1988-1999
Cardiovascular disease (CVD) is a major contributor to patient deaths worldwide, and its pathogenesis is complex and mortality rates are increasing every year. Numerous researches have shown that the gut microbiota and its metabolites were closely associated with the development of CVD, and gut microbiota was expected to be a potential new target for the treatment of CVD. Traditional Chinese medicine (TCM), characterized by its multi-component, multi-target and integrity, can play a therapeutic role in CVD by regulating the gut microbiota, which has obvious advantages in stabilizing the disease, improving heart function and enhancing quality of life, and is an ideal intestinal microecological regulator. Therefore, this review will mainly discuss the intimate association of gut microbiota and its metabolites with CVD, and the therapeutic strategies of TCM targeting gut microbiota to improve CVD, including regulating the composition of gut microbiota, protecting the intestinal mucosal barrier, influencing the intestinal immune function and modulating the metabolites of gut microbiota, in order to provide a reference for the research of TCM targeting gut microbiota for CVD.
6.Evaluation of knee cartilage based on MRI artificial intelligence reconstruction model of knee joint
Hong GAO ; Binge XUE ; Sha WU ; Yakui WANG ; Pengfei FU ; Le SHEN ; Jiawang LOU ; Qi MA ; Pu LIU ; Xu CAI
Chinese Journal of Orthopaedics 2023;43(5):316-321
Objective:To explore the feasibility of the AI intelligent reconstruction model based on knee joint magnetic resonance data developed by Nuctech Company Limited for evaluating knee cartilage injury.Methods:Thirty-three patients (a total of forty-one knees) who were hospitalized with severe knee osteoarthritis in Beijing Tsinghua Changgung Hospital from May 2021 to April 2022 were selected. All of them were planned to be performed total knee arthroplasty (TKA) for the treatment of knee osteoarthritis. Fifteen males with an average age of 71±5 years old and twenty six females with an average age of 71±9 years old were included in this study. There were 19 cases of left knee and 22 cases of right knee. Thin layer MRI examination on the patients' knee joints was performed before the surgery, and artificial intelligence model based on the thin layer MRI data of the knee joint was reconstructed. The cartilage part of the model was selected and corrected by Principal Component Analysis (PCA) in order to realize model straightening. The tibial plateau cartilage of knee joint which intercepted during operation was classified according to the International Cartilage Repair Society (ICRS). Finally the results were compared with the ICRS classification results of knee artificial intelligence reconstruction model and artificial recognition of knee joint MRI images.Results:Compared with the grade of cartilage injury intercepted during our operation which was according to the ICRS classification, the sensitivity of artificial intelligence reconstruction model for the diagnosis of cartilage injury with ICRS classification grade four was 93.1%. The specificity of artificial intelligence reconstruction model was 91.4%. The positive predictive value (PPV) of artificial intelligence reconstruction model was 92.2%. And the negative predictive value (NPV) of artificial intelligence reconstruction model was 80.3%. The area under ROC curve (AUC) was 0.92. The ICRS classification consistency between artificial intelligence model and physical inspection results was good with kappa value 0.81 ( P<0.001) . In the aspect of artificial recognition of cartilage injury grading in MRI images, the sensitivity of artificial recognition was 92.10% compared with the manual identification of cartilage injury classification in MRI images. The specificity of artificial recognition was 91.60%. The positive predictive value (PPV) of artificial recognition was 97.20% and the negative predictive value (NPV) of artificial recognition was 78.8%. The kappa value of the cartilage injury classification in MRI images consistency between artificial recognition and manual identification was 0.79 ( P<0.001). Conclusion:Based on the evaluation of cartilage injury by AI reconstruction model of knee joint, the sensitivity and specificity of the diagnosis of ICRS grade IV cartilage injury can be acceptable, but still needs to be improved.
7.Projections from the Prefrontal Cortex to Zona Incerta Mediate Fear Generalization.
Kun TONG ; Guang-Kai BU ; Si-Qi JING ; Tong WU ; Yu-Tong SONG ; Yue YOU ; Le LIU ; Yuan-Hao CHEN ; Jing-Ru HAO ; Nan SUN ; Can GAO
Neuroscience Bulletin 2023;39(7):1151-1156
8.c-MYC-mediated TRIB3/P62+ aggresomes accumulation triggers paraptosis upon the combination of everolimus and ginsenoside Rh2.
Min-Xia SU ; Yu-Lian XU ; Xiao-Ming JIANG ; Mu-Yang HUANG ; Le-Le ZHANG ; Luo-Wei YUAN ; Xiao-Huang XU ; Qi ZHU ; Jian-Li GAO ; Jia-Hong LU ; Xiuping CHEN ; Ming-Qing HUANG ; Yitao WANG ; Jin-Jian LU
Acta Pharmaceutica Sinica B 2022;12(3):1240-1253
The mammalian target of rapamycin (mTOR) pathway is abnormally activated in lung cancer. However, the anti-lung cancer effect of mTOR inhibitors as monotherapy is modest. Here, we identified that ginsenoside Rh2, an active component of Panax ginseng C. A. Mey., enhanced the anti-cancer effect of the mTOR inhibitor everolimus both in vitro and in vivo. Moreover, ginsenoside Rh2 alleviated the hepatic fat accumulation caused by everolimus in xenograft nude mice models. The combination of everolimus and ginsenoside Rh2 (labeled Eve-Rh2) induced caspase-independent cell death and cytoplasmic vacuolation in lung cancer cells, indicating that Eve-Rh2 prevented tumor progression by triggering paraptosis. Eve-Rh2 up-regulated the expression of c-MYC in cancer cells as well as tumor tissues. The increased c-MYC mediated the accumulation of tribbles homolog 3 (TRIB3)/P62+ aggresomes and consequently triggered paraptosis, bypassing the classical c-MYC/MAX pathway. Our study offers a potential effective and safe strategy for the treatment of lung cancer. Moreover, we have identified a new mechanism of TRIB3/P62+ aggresomes-triggered paraptosis and revealed a unique function of c-MYC.
9.Outcomes at discharge of preterm infants born <34 weeks' gestation.
Ning Xin LUO ; Si Yuan JIANG ; Yun CAO ; Shu Jun LI ; Jun Yan HAN ; Qi ZHOU ; Meng Meng LI ; Jin Zhen GUO ; Hong Yan LIU ; Zu Ming YANG ; Yong JI ; Bao Quan ZHANG ; Zhi Feng HUANG ; Jing YUAN ; Dan Dan PAN ; Jing Yun SHI ; Xue Feng HU ; Su LIN ; Qian ZHAO ; Chang Hong YAN ; Le WANG ; Qiu Fen WEI ; Qing KAN ; Jin Zhi GAO ; Cui Qing LIU ; Shan Yu JIANG ; Xiang Hong LIU ; Hui Qing SUN ; Juan DU ; Li HE
Chinese Journal of Pediatrics 2022;60(8):774-780
Objective: To investigate the incidence and trend of short-term outcomes among preterm infants born <34 weeks' gestation. Methods: A secondary analysis of data from the standardized database established by a multicenter cluster-randomized controlled study "reduction of infection in neonatal intensive care units (NICU) using the evidence-based practice for improving quality (REIN-EPIQ) study". This study was conducted in 25 tertiary NICU. A total of 27 192 infants with gestational age <34 weeks at birth and admitted to NICU within the first 7 days of life from May 2015 to April 2018 were enrolled. Infants with severe congenital malformation were excluded. Descriptive analyses were used to describe the mortality and major morbidities of preterm infants by gestational age groups and different admission year groups. Cochran-Armitage test and Jonckheere-Terpstra test were used to analyze the trend of incidences of mortality and morbidities in 3 study-years. Multiple Logistic regression model was constructed to analyze the differences of outcomes in 3 study-years adjusting for confounders. Results: A total of 27 192 preterm infants were enrolled with gestational age of (31.3±2.0) weeks at birth and weight of (1 617±415) g at birth. Overall, 9.5% (2 594/27 192) of infants were discharged against medical advice, and the overall mortality rate was 10.7% (2 907/27 192). Mortality for infants who received complete care was 4.7% (1 147/24 598), and mortality or any major morbidity was 26.2% (6 452/24 598). The incidences of moderate to severe bronchopulmonary dysplasia, sepsis, severe intraventricular hemorrhage or periventricular leukomalacia, proven necrotizing enterocolitis, and severe retinopathy of prematurity were 16.0% (4 342/27 192), 11.9% (3 225/27 192), 6.8% (1 641/24 206), 3.6% (939/25 762) and 1.5% (214/13 868), respectively. There was a decreasing of the overall mortality (P<0.001) during the 3 years. Also, the incidences for sepsis and severe retinopathy of prematurity both decreased (both P<0.001). However, there were no significant differences in the major morbidity in preterm infants who received complete care during the 3-year study period (P=0.230). After adjusting for confounders, infants admitted during the third study year showed significantly lower risk of overall mortality (adjust OR=0.62, 95%CI 0.55-0.69, P<0.001), mortality or major morbidity, moderate to severe bronchopulmonary dysplasia, sepsis and severe retinopathy of prematurity, compared to those admitted in the first study year (all P<0.05). Conclusions: From 2015 to 2018, the mortality and major morbidities among preterm infants in Chinese NICU decreased, but there is still space for further efforts. Further targeted quality improvement is needed to improve the overall outcome of preterm infants.
Bronchopulmonary Dysplasia/epidemiology*
;
Gestational Age
;
Humans
;
Infant
;
Infant Mortality/trends*
;
Infant, Newborn
;
Infant, Premature
;
Infant, Premature, Diseases/epidemiology*
;
Patient Discharge
;
Retinopathy of Prematurity/epidemiology*
;
Sepsis/epidemiology*
10.Effect of fudosteine on lung cancer cells in an inflammatory microenvironment based on metabolomics
Yi-fei WANG ; Qi-le ZHANG ; Xin LI ; Meng-ting GAO ; Li ZHANG ; An-wei DING ; Wen-yu XIA ; Wei-feng YAO
Acta Pharmaceutica Sinica 2022;57(2):419-427
GC-MS metabolomics was used to investigate the effects of fudosteine on lung cancer A549 cells in an inflammatory microenvironment. Eleven metabolites (malic acid, isoleucine, lactose, galactinol, creatinine, gluconic acid, oleic acid, phosphate,

Result Analysis
Print
Save
E-mail