1.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
2.Advances in Salmonella -mediated targeted tumor therapy
Zhao-rui LÜ ; Dong-yi LI ; Yu-yang ZHU ; He-qi HUANG ; Hao-nan LI ; Zi-chun HUA
Acta Pharmaceutica Sinica 2024;59(1):17-24
italic>Salmonella has emerged as a promising tumor-targeting strategy in recent years due to its good tumor targeting ability and certain safety. In order to further optimize its therapeutic effect, scientists have tried to modify
3.Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults (version 2024)
Qingde WANG ; Yuan HE ; Bohua CHEN ; Tongwei CHU ; Jinpeng DU ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Hua GUO ; Yong HAI ; Lijun HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Hongjian LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Hong XIA ; Guoyong YIN ; Jinglong YAN ; Wen YUAN ; Zhaoming YE ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Yingjie ZHOU ; Zhongmin ZHANG ; Wei MEI ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2024;40(2):97-106
Ankylosing spondylitis (AS) combined with lower cervical fracture is often categorized into unstable fracture, with a high incidence of neurological injury and a high rate of disability and morbidity. As factors such as shoulder occlusion may affect the accuracy of X-ray imaging diagnosis, it is often easily misdiagnosed at the primary diagnosis. Non-operative treatment has complications such as bone nonunion and the possibility of secondary neurological damage, while the timing, access and choice of surgical treatment are still controversial. Currently, there are no clinical practice guidelines for the treatment of AS combined with lower cervical fracture with or without dislocation. To this end, the Spinal Trauma Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults ( version 2024) in accordance with the principles of evidence-based medicine, scientificity and practicality, in which 11 recommendations were put forward in terms of the diagnosis, imaging evaluation, typing and treatment, etc, to provide guidance for the diagnosis and treatment of AS combined with lower cervical fracture.
4.Investigation and analysis of the current status of transjugular intrahepatic portosystemic shunt treatment for portal hypertension in China
Haozhuo GUO ; Meng NIU ; Haibo SHAO ; Xinwei HAN ; Jianbo ZHAO ; Junhui SUN ; Zhuting FANG ; Bin XIONG ; Xiaoli ZHU ; Weixin REN ; Min YUAN ; Shiping YU ; Weifu LYU ; Xueqiang ZHANG ; Chunqing ZHANG ; Lei LI ; Xuefeng LUO ; Yusheng SONG ; Yilong MA ; Tong DANG ; Hua XIANG ; Yun JIN ; Hui XUE ; Guiyun JIN ; Xiao LI ; Jiarui LI ; Shi ZHOU ; Changlu YU ; Song HE ; Lei YU ; Hongmei ZU ; Jun MA ; Yanming LEI ; Ke XU ; Xiaolong QI
Chinese Journal of Radiology 2024;58(4):437-443
Objective:To investigate the current situation of the use of transjugular intrahepatic portosystemic shunt (TIPS) for portal hypertension, which should aid the development of TIPS in China.Methods:The China Portal Hypertension Alliance (CHESS) initiated this study that comprehensively investigated the basic situation of TIPS for portal hypertension in China through network research. The survey included the following: the number of surgical cases, main indications, the development of Early-TIPS, TIPS for portal vein cavernous transformation, collateral circulation embolization, intraoperative portal pressure gradient measurement, commonly used stent types, conventional anticoagulation and time, postoperative follow-up, obstacles, and the application of domestic instruments.Results:According to the survey, a total of 13 527 TIPS operations were carried out in 545 hospitals participating in the survey in 2021, and 94.1% of the hospital had the habit of routine follow-up after TIPS. Most hospitals believed that the main indications of TIPS were the control of acute bleeding (42.6%) and the prevention of rebleeding (40.7%). 48.1% of the teams carried out early or priority TIPS, 53.0% of the teams carried out TIPS for the cavernous transformation of the portal vein, and 81.0% chose routine embolization of collateral circulation during operation. Most of them used coils and biological glue as embolic materials, and 78.5% of the team routinely performed intraoperative portal pressure gradient measurements. In selecting TIPS stents, 57.1% of the hospitals woulel choose Viator-specific stents, 57.2% woulel choose conventional anticoagulation after TIPS, and the duration of anticoagulation was between 3-6 months (55.4%). The limitation of TIPS surgery was mainly due to cost (72.3%) and insufficient understanding of doctors in related departments (77.4%). Most teams accepted the domestic instruments used in TIPS (92.7%).Conclusions:This survey shows that TIPS treatment is an essential part of treating portal hypertension in China. The total number of TIPS cases is far from that of patients with portal hypertension. In the future, it is still necessary to popularize TIPS technology and further standardize surgical indications, routine operations, and instrument application.
5.Carrier screening for 223 monogenic diseases in Chinese population:a multi-center study in 33 104 individuals
Wei HOU ; Xiaolin FU ; Xiaoxiao XIE ; Chunyan ZHANG ; Jiaxin BIAN ; Xiao MAO ; Juan WEN ; Chunyu LUO ; Hua JIN ; Qian ZHU ; Qingwei QI ; Yeqing QIAN ; Jing YUAN ; Yanyan ZHAO ; Ailan YIN ; Shutie LI ; Yulin JIANG ; Manli ZHANG ; Rui XIAO ; Yanping LU
Journal of Southern Medical University 2024;44(6):1015-1023
Objective To investigate the epidemiological characteristics and mutation spectrum of monogenic diseases in Chinese population through a large-scale,multicenter carrier screening.Methods This study was conducted among a total of 33 104 participants(16 610 females)from 12 clinical centers across China.Carrier status for 223 genes was analyzed using high-throughput sequencing and different PCR methods.Results The overall combined carrier frequency was 55.58%for 197 autosomal genes and 1.84%for 26 X-linked genes in these participants.Among the 16 669 families,874 at-risk couples(5.24%)were identified.Specifically,584 couples(3.50%)were at risk for autosomal genes,306(1.84%)for X-linked genes,and 16 for both autosomal and X-linked genes.The most frequently detected autosomal at-risk genes included GJB2(autosomal recessive deafness type 1A,393 couples),HBA1/HBA2(α-thalassemia,36 couples),PAH(phenylketonuria,14 couples),and SMN1(spinal muscular atrophy,14 couples).The most frequently detected X-linked at-risk genes were G6PD(G6PD deficiency,236 couples),DMD(Duchenne muscular dystrophy,23 couples),and FMR1(fragile X syndrome,17 couples).After excluding GJB2 c.109G>A,the detection rate of at-risk couples was 3.91%(651/16 669),which was lowered to 1.72%(287/16 669)after further excluding G6PD.The theoretical incidence rate of severe monogenic birth defects was approximately 4.35‰(72.5/16 669).Screening for a battery of the top 22 most frequent genes in the at-risk couples could detect over 95%of at-risk couples,while screening for the top 54 genes further increased the detection rate to over 99%.Conclusion This study reveals the carrier frequencies of 223 monogenic genetic disorders in the Chinese population and provides evidence for carrier screening strategy development and panel design tailored to the Chinese population.In carrier testing,genetic counseling for specific genes or gene variants can be challenging,and the couples need to be informed of these difficulties before testing and provided with options for not screening these genes or gene variants.
6.Advances of artificial intelligence technology in the discovery and optimization of lead compounds
Zi-yue LI ; Kai-yuan CONG ; Shi-qi WU ; Qi-hua ZHU ; Yun-gen XU ; Yi ZOU
Acta Pharmaceutica Sinica 2024;59(9):2443-2453
In recent years, artificial intelligence (AI) technology has advanced rapidly and has been widely applied in various fields such as medicine and pharmacy, accelerating the drug development process. Focusing on the application of AI in the discovery and optimization of lead compounds, this review provides a detailed introduction to AI-assisted virtual screening and molecular generation methods for discovering lead compounds, while particularly highlighting the cases of AI-drived drugs into clinical trials. Additionally, we briefly outline the application of AI basic algorithm models in quantitative structure-activity relationship (QSAR) and drug repurposing, offering insights for AI-based drug discovery.
7.Study on Synthesis and Antioxidant Activities in Vitro of Curcumin Pyrazole Derivative
Hua-Jun ZHANG ; Can-Ming LI ; Qin-Xue SUI ; Mei-Qi ZHAN ; Jing GONG ; Li-Ping ZHU ; Tao WANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(9):2452-2456
Objective To construct curcumin pyrazole derivative by the reaction of diketone of curcumin and benzylhydrazine based on the above structure-activity relationship,and to explore its antioxidant activity to provide experimental basis for the development of curcumin antioxidant derivative.Methods Curcumin-N-substituted pyrazole derivative was synthesized from curcumin and benzylhydrazine.The structures of the derivative were confirmed by infrared spectroscopy(IR),nuclear magnetic resonance spectroscopy(1H-NMR,13C-NMR)and LC-MS.The antioxidant activity in vitro of the derivative was evaluated by determination of curcumin and its pyrazole derivative scavenging ability for 2,2-diphenyl-1-picrylhydrazyl(DPPH)free radical and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid(ABTS)free radical.Results Curcumin pyrazole derivative was successfully synthesized.Curcumin and its pyrazole derivative showed good free radical scavenging effects in the range of 4.6-73.6,6.25-100 μg·mL-1,respectively,with a significant dose-effect relationship.The half-maximal inhibition(IC50)values of curcumin and its pyrazole derivatives determined by DPPH method were 14.24,40.37 μg·mL-1,respectively,while the IC50 values of curcumin and its pyrazole derivatives determined by ABTS method were 36.65,19.26 μg·mL-1,respectively.Conclusion The antioxidant activity of β-dione of curcumin was retained through the substitution of the pyrazole ring,and the curcumin pyrazole derivative deserves further investigation as a potential antioxidant.
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
9.A real-world study of first-line albumin-bound paclitaxel in the treatment of advanced pancreatic cancer in China
Juan DU ; Xin QIU ; Jiayao NI ; Qiaoli WANG ; Fan TONG ; Huizi SHA ; Yahui ZHU ; Liang QI ; Wei CAI ; Chao GAO ; Xiaowei WEI ; Minbin CHEN ; Zhuyin QIAN ; Maohuai CAI ; Min TAO ; Cailian WANG ; Guocan ZHENG ; Hua JIANG ; Anwei DAI ; Jun WU ; Minghong ZHAO ; Xiaoqin LI ; Bin LU ; Chunbin WANG ; Baorui LIU
Chinese Journal of Oncology 2024;46(11):1038-1048
Objective:To observe and evaluate the clinical efficacy and safety of albumin-bound paclitaxel as first-line treatment for patients with advanced pancreatic cancer in China, and to explore the prognosis-related molecules in pancreatic cancer based on next-generation sequencing (NGS) of tumor tissues.Methods:From December 2018 to December 2020, patients with locally advanced or metastatic pancreatic cancer were recruited to accept albumin-bound paclitaxel as first-line treatment in the oncology departments of 24 hospitals in East China. The primary endpoints were overall survival (OS) and treatment related adverse events, and the secondary endpoint was progression-free survival (PFS). Adverse effects were graded using Common Terminology Criteria for Adverse Events 5.0 (CTCAE 5.0). NGS sequencing on the primary or metastatic tissue samples of pancreatic cancer obtained through surgical resection or biopsy was performed.Results:This study recruited 229 patients, including 70 patients with locally advanced pancreatic cancer (LAPC) and 159 patients with metastatic pancreatic cancer (mPC). The disease control rate was 79.9% and the objective response rate is 36.3%.The common adverse effects during treatment were anaemia (159 cases), leucopenia (170 cases), neutropenia (169 cases), increased aminotransferases (110 cases), and thrombocytopenia (95 cases), and the incidence of grade 3-4 neutropenia is 12.2% (28/229). The median follow-up time was 21.2 months (95% CI: 18.5-23.1 months). The median PFS (mPFS) was 5.3 months (95% CI: 4.37-4.07 months) and the median OS (mOS) was 11.2 months (95% CI: 9.5-12.9 months). The mPFS of patients with LAPC was 7.4 months (95% CI: 6.6-11.2 months), and their mOS was 15.5 months (95% CI: 12.6-NA months). The mPFS of patients with mPC was 3.9 months (95% CI: 3.4-5.1 months), and their mOS was 9.3 months (95% CI: 8.0-10.8 months). Multivariate Cox regression analysis showed that clinical stage ( HR=1.47, 95% CI: 1.06-2.04), primary tumor site ( HR=0.64, 95% CI: 0.48-0.86), Eastern Cooperative Oncology Group Performance Status (ECOG PS) score ( HR=2.66, 95% CI: 1.53-4.65), and whether to combine radiotherapy ( HR=0.65, 95% CI: 0.42-1.00) were independent influencing factors for the PFS of these patients. The primary tumor site ( HR=0.68, 95% CI: 0.48-0.95), ECOG score ( HR=5.82, 95% CI: 3.14-10.82), and whether to combine radiotherapy ( HR=0.58, 95% CI: 0.35-0.96) were independent influencing factors of the OS of these patients. The most frequent gene mutations in these advanced stage pancreatic patients were KRAS (89.66%), TP53 (77.01%), CDKN2A (32.18%), and SMAD4 (21.84%) by NGS of tumor tissues from 87 pancreatic cancer patients with sufficient specimens. Further analysis revealed that mutations in CDKN2B, PTEN, FGF6, and RBBP8 genes were significantly associated with an increased risk of death ( P<0.05). Conclusion:Albumin-bound paclitaxel as first-line treatment demonstrated feasible anti-tumor efficacy and manageable safety for patients with advanced pancreatic cancer in China.
10.Carrier screening for 223 monogenic diseases in Chinese population:a multi-center study in 33 104 individuals
Wei HOU ; Xiaolin FU ; Xiaoxiao XIE ; Chunyan ZHANG ; Jiaxin BIAN ; Xiao MAO ; Juan WEN ; Chunyu LUO ; Hua JIN ; Qian ZHU ; Qingwei QI ; Yeqing QIAN ; Jing YUAN ; Yanyan ZHAO ; Ailan YIN ; Shutie LI ; Yulin JIANG ; Manli ZHANG ; Rui XIAO ; Yanping LU
Journal of Southern Medical University 2024;44(6):1015-1023
Objective To investigate the epidemiological characteristics and mutation spectrum of monogenic diseases in Chinese population through a large-scale,multicenter carrier screening.Methods This study was conducted among a total of 33 104 participants(16 610 females)from 12 clinical centers across China.Carrier status for 223 genes was analyzed using high-throughput sequencing and different PCR methods.Results The overall combined carrier frequency was 55.58%for 197 autosomal genes and 1.84%for 26 X-linked genes in these participants.Among the 16 669 families,874 at-risk couples(5.24%)were identified.Specifically,584 couples(3.50%)were at risk for autosomal genes,306(1.84%)for X-linked genes,and 16 for both autosomal and X-linked genes.The most frequently detected autosomal at-risk genes included GJB2(autosomal recessive deafness type 1A,393 couples),HBA1/HBA2(α-thalassemia,36 couples),PAH(phenylketonuria,14 couples),and SMN1(spinal muscular atrophy,14 couples).The most frequently detected X-linked at-risk genes were G6PD(G6PD deficiency,236 couples),DMD(Duchenne muscular dystrophy,23 couples),and FMR1(fragile X syndrome,17 couples).After excluding GJB2 c.109G>A,the detection rate of at-risk couples was 3.91%(651/16 669),which was lowered to 1.72%(287/16 669)after further excluding G6PD.The theoretical incidence rate of severe monogenic birth defects was approximately 4.35‰(72.5/16 669).Screening for a battery of the top 22 most frequent genes in the at-risk couples could detect over 95%of at-risk couples,while screening for the top 54 genes further increased the detection rate to over 99%.Conclusion This study reveals the carrier frequencies of 223 monogenic genetic disorders in the Chinese population and provides evidence for carrier screening strategy development and panel design tailored to the Chinese population.In carrier testing,genetic counseling for specific genes or gene variants can be challenging,and the couples need to be informed of these difficulties before testing and provided with options for not screening these genes or gene variants.

Result Analysis
Print
Save
E-mail