1.Levels and influencing factors of perfluorinated and polyfluoroalkyl substances in umbilical cord serum from Sheyang Mini Birth Cohort Study, Jiangsu Province
Ruonan TAN ; Zheng WANG ; Jiming ZHANG ; Yiming DAI ; Jianqiu GUO ; Xiaojuan QI ; Dasheng LU ; Xiuli CHANG ; Chunhua WU ; Zhijun ZHOU
Journal of Environmental and Occupational Medicine 2024;41(8):841-848
Background Perfluorinated and polyfluoroalkyl substances (PFAS), a large group of emerging pollutants, are ubiquitous in the ecological environment. Their multiple organ toxic effects on human body are reported. Understanding the exposure level of PFAS in cord serum and associated influencing factors can provide scientific evidence for studying maternal and newborn health effects and risk regulation. Objective To explore the exposure levels of PFAS in cord serum and potential impact factors. Methods This study was based on the maternal and infant database and the cord serum sample bank of the Sheyang Mini Birth Cohort Study (SMBCS) established in 2009. A self-designed questionnaire was used to collect information on sociodemographic characteristics, living environment, and lifestyle of mothers during pregnancy. A total of
2.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
3.Clinical study of percutaneous transluminal coronary intravascular lithotripsy angioplasty for severe left main coronary artery calcification guided by intravascular ultrasound percutaneous coronary
Feng-Qi LIU ; Jun BAO ; Bai-Hong LI ; Chong-Hao CHEN ; Chang-Zheng GAO ; Yun-Feng GUO ; Xin GU ; Jian-Bin GU ; Xiao-Yan WANG
Chinese Journal of Interventional Cardiology 2024;32(7):383-389
Objective To explore the effectiveness and safety of percutaneous coronary artery shock wave balloon angioplasty(IVL)under the guidance of intravascular ultrasound(IVUS)for the treatment of severe calcification lesions in the left main artery(LM).Methods A total of 26 patients with severe LM(mouth,body,bifurcation)calcification admitted to Jiangnan University Affiliated Hospital from October 2022 to April 2024 were included,with an average age of 72.0(61.8,75.4)years.Under the guidance of IVUS,IVL was used for pre-treatment of calcified lesions,followed by percutaneous coronary intervention(PCI)with stent/drug balloon implantation.All patients were evaluated using IVUS before and after the use of IVL and after PCI.And compare the IVUS intracavity related data before and after treatment[plaque burden(PB)、minimum lumen area(MLA)、minimum lumen diameter(MLD)]and calcification fracture number,minimum stent area(MSA),stent expansion coefficient(expansion,EXP),etc.Results There were 26 patients(2 with opening lesions,7 with body lesions,and 17 with bifurcation lesions at the end of the main trunk),including 7 with stable angina pectoris(SAP),10 with unstable angina(UA),4 with acute ST-segment elevation myocardial infarction(STEMI),and 5 with non ST-segment elevation myocardial infarction(NSTEMI).The PB at the most severe site of calcification decreased by 79.50(76.00,83.75)%compared to 80.00(76.00,83.75)%after IVL(P=0.001),MLA increased by 3.39(3.14,3.68)mm2 compared to 3.38(3.14,3.67)mm2 after IVL(P=0.039),MLD increased by 3.21(3.07,3.30)mm compared to 3.20(3.07,3.30)mm after IVL(P=0.024),and there was 100%calcification rupture(1/2 cases,2/9 cases,≥3/15 cases).The stent/drug ball was successfully implanted 100%,with EXP of(89.15±4.42)%and an MSA of 7.20(6.46,7.45)mm2.No adverse events such as death,angina or recurrent myocardial infarction occurred during the 3 months follow-up after surgery.Conclusions After evaluation by IVUS and pre-treatment with IVL,PCI was successfully completed for severe calcification lesions in LM,and IVL can be used as an option for the treatment of severe calcification in LM.
4.Research Progress of Network Pharmacology in the TCM Field
Qi ZHANG ; Jiu CHANG ; Weiwei JI ; Hong ZHENG ; Yuyan XIANG ; Lihong LIU ; Xiaobo ZHU
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(11):186-190
Chinese materia medica and its compound formulas have the characteristics of multi-component,multi-target,and multi pathway effects,and have unique advantages in preventing and treating complex diseases.Network pharmacology explains disease patterns and drug mechanisms from the perspective of complex biological networks,and explores the pharmacological substance basis and target of Chinese medicine.This article summarized the application of network pharmacology from the aspects of biological basis of TCM syndrome,the substance basis and pharmacological mechanism of TCM,compatibility theory of TCM compound formulas,etc.,with the purpose to provide a reference for the research and application of network pharmacology in TCM.
5.LIN Chang-Song's Experience in Differentiating and Treating Behcet's Disease
Lian-Jie LIU ; Xue-Xia ZHENG ; Qi WU ; Chang-Song LIN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(5):1329-1334
Behcet's disease can be classified into the category of fox-creeper disease in the field of traditional Chinese medicine(TCM).Professor LIN Chang-Song believes that the pathogenesis of Behcet's disease is characterized by deficiency in origin and excess in superficiality,and liver depression and spleen deficiency is the fundamental pathogenesis of Behcet's disease.The cause of Behcet's disease is due to exogenous attack of pathogenic qi,and the disease has the syndrome manifestation of internal accumulation of damp-heat.For the treatment of Bechet's disease,the use of self-made Baisai Prescription and Kouyan Prescription which were derived from Gancao Xiexin Decoction recorded in Jin Gui Yao Lve(Essentials from the Golden Cabinet)together with large dosage of Glycyrrhizae Radix et Rhizoma has achieved good clinical efficacy.According to the original records of traditional Chinese Medicine classics and by combining the clinical medication experience,Professor LIN Chang-Song proposed that the dosage of Glycyrrhizae Radix et Rhizoma should be enlarged,usually in the dose of 30-40 g.For the treatment of patients with Behcet's disease with obvious spleen and stomach deficiency syndrome,modified Baisai Prescription(composed of Glycyrrhizae Radix et Rhizoma Praeparata cum Melle,Codonopsis Radix,Pyrolae Herba,Pinelliae Rhizoma Praeparatum,Zingiberis Rhizoma Recens,Scutellariae Radix,Coptidis Rhizoma,etc.)is adopted and Glycyrrhizae Radix et Rhizoma Praeparata cum Melle should be used.For the treatment of patients with intense damp-heat type of Behcet's disease,Kouyan Prescription(composed of Glycyrrhizae Radix et Rhizoma,Scutellariae Radix,Coptidis Rhizoma,Pinelliae Rhizoma Praeparatum,Zingiberis Rhizoma Recens,Jujubae Fructus,Pseudostellariae Radix,Ganoderma Capense,Lophatheri Herba,Plantaginis Semen,etc.)is recommended and raw Glycyrrhizae Radix et Rhizoma should be adopted.Moreover,the importance of having proper eating and drinking,keeping regular living and avoiding to overwork to prevent the recurrence of Behcet's disease was stressed.
6.Protective Effects of Astrocyte-derived Exosomes on Mitochondrial Functional Damage after Oxygen-glucose Deprivation/Reoxygenation
Xiao GAO ; Zheng-Wei WANG ; Na CAI ; Zhi TANG ; Chang-Xue WU ; Xiao-Lan QI ; Zhi-Zhong GUAN ; Yan XIAO
Chinese Journal of Biochemistry and Molecular Biology 2024;40(6):827-837
Exosomes can ameliorate neuronal cell injury induced by hypoxia-ischemia,but the relation-ship between astrocyte-derived exosomes(As-exo)and mitochondrial function,mitochondrial associated ER membrane(MAM)function and whether mitochondrial autophagy is relevant is currently unclear.The aim of this study was to investigate the role of astrocyte-derived exosomes in the regulation of mito-chondrial function,MAM and mitochondrial autophagy in PC 12 cells after oxygen and glucose depriva-tion/reoxygenation(OGD/R).Exosomes were extracted from the supernatant of the astrocyte culture me-dium by ultracentrifugation.Using the live cell imaging system,we observed that fluorescently labeled exosomes could show obvious enrichment in PC 12 cells at 24 h.Meanwhile,co-localization of exosomes with mitochondria could be observed under the laser confocal scanning microscope;mitochondrial pres-sure changes were detected using the Seahorse cellular energy metabolism fractionation instrument.The result showed that basal respiration in the OGD/R group,compared with that in the control group,proton leakage,maximal respiration and ATP-related respiration were significantly reduced(P<0.05 or P<0.01),and all four indexes were elevated and statistically significant in the OGD/R+exo group compared with the control group(P<0.05 or P<0.01).The results of the co-localization of the mitochondria and ER showed that the structure of the MAM was harmed by oxygen-sugar deprivation and then reoxygen-ation,and the structure of As-exo and the mitochondria appeared to have a distance-reduced polymeriza-tion phenomenon,while the mitochondria and ER co-localized.The co-localization results of mitochondri-a and ER showed that the structure of MAM was damaged by oxygen deprivation and reoxygenation,and the aggregation phenomenon of MAM was weakened by the treatment of As-exo;the flow-through results showed that As-exo could restore the decrease of the mitochondrial membrane potential and the elevation of the ROS by oxygen deprivation to a certain degree.Western blotting showed that As-exo could signifi-cantly inhibit the mitochondrial autophagy-associated tension protein homologue induced hypothetical ki-nase 1(PTEN induced kinase 1(PINK1)and Parkin protein(parkin RBR E3 ubiquitin protein ligase(Parkin))were elevated,and the addition of As-exo decreased LC3 Ⅱ/LC3 Ⅰ protein expression,ele-vated P62 protein expression,and reduced OGD/R-induced mitochondrial autophagy.The results showed that OGD/R treatment can cause mitochondrial dysfunction,MAM structural changes and increased mito-chondrial autophagy in PC12 cells,and As-exo treatment can improve mitochondrial function,attenuate the formation of MAM,and reduce mitochondrial autophagy in PC 12 cells,which can have the potential of preventing the reperfusion injury in ischemic stroke.
7.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
8.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
9.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
10.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.

Result Analysis
Print
Save
E-mail