1.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
2.Variation rules of main secondary metabolites in Hedysari Radix before and after rubbing strip
Xu-Dong LUO ; Xin-Rong LI ; Cheng-Yi LI ; Peng QI ; Ting-Ting LIANG ; Shu-Bin LIU ; Zheng-Ze QIANG ; Jun-Gang HE ; Xu LI ; Xiao-Cheng WEI ; Xiao-Li FENG ; Ming-Wei WANG
Chinese Traditional Patent Medicine 2024;46(3):747-754
AIM To investigate the variation rules of main secondary metabolites in Hedysari Radix before and after rubbing strip.METHODS UPLC-MS/MS was adopted in the content determination of formononetin,ononin,calycosin,calycosin-7-glucoside,medicarpin,genistein,luteolin,liquiritigenin,isoliquiritigenin,vanillic acid,ferulic acid,γ-aminobutyric acid,adenosine and betaine,after which cluster analysis,principal component analysis and orthogonal partial least squares discriminant analysis were used for chemical pattern recognition to explore differential components.RESULTS After rubbing strip,formononetin,calycosin,liquiritigenin and γ-aminobutynic acid demonstrated increased contents,along with decreased contents of ononin,calycosin-7-glucoside and vanillic acid.The samples with and without rubbing strip were clustered into two types,calycosin-7-glucoside,formononetin,γ-aminobutynic acid,vanillic acid,calycosin-7-glucoside and formononetin were differential components.CONCLUSION This experiment clarifies the differences of chemical constituents in Hedysari Radix before and after rubbing strip,which can provide a reference for the research on rubbing strip mechanism of other medicinal materials.
3.Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults (version 2024)
Qingde WANG ; Yuan HE ; Bohua CHEN ; Tongwei CHU ; Jinpeng DU ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Hua GUO ; Yong HAI ; Lijun HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Hongjian LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Hong XIA ; Guoyong YIN ; Jinglong YAN ; Wen YUAN ; Zhaoming YE ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Yingjie ZHOU ; Zhongmin ZHANG ; Wei MEI ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2024;40(2):97-106
Ankylosing spondylitis (AS) combined with lower cervical fracture is often categorized into unstable fracture, with a high incidence of neurological injury and a high rate of disability and morbidity. As factors such as shoulder occlusion may affect the accuracy of X-ray imaging diagnosis, it is often easily misdiagnosed at the primary diagnosis. Non-operative treatment has complications such as bone nonunion and the possibility of secondary neurological damage, while the timing, access and choice of surgical treatment are still controversial. Currently, there are no clinical practice guidelines for the treatment of AS combined with lower cervical fracture with or without dislocation. To this end, the Spinal Trauma Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults ( version 2024) in accordance with the principles of evidence-based medicine, scientificity and practicality, in which 11 recommendations were put forward in terms of the diagnosis, imaging evaluation, typing and treatment, etc, to provide guidance for the diagnosis and treatment of AS combined with lower cervical fracture.
4.Drug metabolism and excretion of14Cbirociclib in Chinese male healthy subjects
Quan-Kun ZHUANG ; Hui-Rong FAN ; Shi-Qi DONG ; Bin-Ke FAN ; Ming-Ming LIU ; Ling-Mei XU ; Li WANG ; Xue-Mei LIU ; Fang HOU
The Chinese Journal of Clinical Pharmacology 2024;40(14):2118-2123
Objective To evaluate the characteristics of the mass balance and pharmacokinetics of[14 C]birociclib in Chinese male healthy volunteers after a single oral administration.Methods This study used a 14 C labeled method to investigate the mass balance and biological transformation of birociclib in human.Subjects were given a single oral dose of 360 mg/50 pCi of[14 C]birociclib suspension after meals.The blood,urine,and fecal samples were collected at specified time points/intervals after administration.The radiation levels of 14 C labeled birociclib-related compounds in the blood,plasma,urine,and feces were analyzed using liquid scintillation counting.In addition,a combination of high-performance liquid chromatography and on-line/off-line isotope detectors was used to obtain radioactive isotope metabolite spectra of plasma,urine,and fecal samples,and high-resolution mass spectrometry was used to identify the main metabolites.Results A total of 6 healthy male subjects were enrolled in this study.The median peak time of radioactive components in plasma was 5.00 h and the average terminal elimination half-life was 43.70 h after administration.The radioactive components were basically excreted and cleared from the body within 288.00 hours after administration,and average cumulative recovery rate of radioactive drugs was(94.10±8.19)%.The radioactive drugs were mainly excreted through feces,accounting for(84.60±7.10)%of the dose of radioactive drugs administered.Urine was the secondary excretory pathway,accounting for 9.41%of the dose of radioactive drugs administered.Metabolic analysis indicated that the prototype drug was the main radioactive components in plasma samples.The main metabolites in plasma were RM4(XZP-5286),RM6(XZP-3584),and RM7(XZP-5736).The drugs were mainly cleared from the body in the form of prototype drugs and metabolites.In addition to prototype drugs,a total of 9 metabolites were identified and analyzed in plasma,urine,and fecal samples,all of which were phase 1 metabolites.The main metabolic and clearance pathways of drugs in the body were deethylation,diisopropylat ion,oxidation,etc.Conclusion After a single oral administration of[14C]birociclib suspension to healthy subjects,it was mainly cleared from the body in the form of prototype drugs and metabolites,with feces as the main excretory pathway and urine as the secondary excretory pathway.Drugs mainly undergo metabolic reactions in the body,such as deethylation,diisopropylation,and oxidation.The subjects were well tolerance after administration.
5.Dahuang Huanglian Xiexintang and Its Modified Prescription Improve Type 2 Diabetes Mellitus: A Review
Dong AN ; Yanhui ZHAI ; Yankui GAO ; Rong LIU ; Qi ZHOU ; Xiangdong ZHU ; Yonglin LIANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(24):141-151
Type 2 diabetes mellitus (T2DM) is based on insulin resistance (IR) and insulin secretion deficiency, with the specific mechanisms still unclear. Current research involves mechanisms such as glycolipid toxicity, inflammatory response, oxidative stress damage, and mitochondrial dysfunction. Modern traditional Chinese medicine (TCM) scholars have named it "blood glucose collateral disease" based on the clinical characteristics and natural progression of T2DM. This condition is primarily manifested as abnormal blood sugar levels in the early stages, and as the disease progresses, it gradually causes widespread damage to the body's veins and collaterals, ultimately leading to lesions in vessels and collaterals. Among these, "spleen heat" (obesity type) is the most common clinical type of T2DM. The concept of "internal heat-induced elimination" runs through both the onset and complications of T2DM, with internal heat being a key factor in its pathogenesis. The clinical application of Dahuang Huanglian Xiexintang and its modifications has achieved significant therapeutic effects. This paper reviews the origins and treatment characteristics of Dahuang Huanglian Xiexintang, along with clinical application research and experimental studies related to T2DM treatment, involving mechanisms for regulating glucose and lipid metabolism disorders, improving IR, modulating inflammatory responses, combating oxidative stress damage, regulating autophagy-related signaling pathways, modulating intestinal flora, inhibiting pyroptosis, and alleviating endoplasmic reticulum stress, with the purpose to provide direction for further research on the prevention and treatment of T2DM and its related complications, to offer reference for developing Dahuang Huanglian Xiexintang as a rapid hypoglycemic Chinese patent medicine for obese T2DM, and to better guide the clinical promotion of this drug.
6.Research on species identification of commercial medicinal and food homology scented herbal tea
Jing SUN ; Zi-yi HUANG ; Si-qi LI ; Yu-fang LI ; Yan HU ; Shi-wen GUO ; Ge HU ; Chuan-pu SHEN ; Fu-rong YANG ; Yu-lin LIN ; Tian-yi XIN ; Xiang-dong PU
Acta Pharmaceutica Sinica 2024;59(9):2612-2624
The adulteration and counterfeiting of herbal ingredients in medicinal and food homology (MFH) have a serious impact on the quality of herbal materials, thereby endangering human health. Compared to pharmaceutical drugs, health products derived from traditional Chinese medicine (TCM) are more easily accessible and closely integrated into consumers' daily life. However, the authentication of the authenticity of TCM ingredients in MFH has not received sufficient attention. The lack of clear standards emphasizes the necessity of conducting systematic research in this area. This study utilized DNA barcoding technology, combining ITS2,
7.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
8.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
9.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
10.Dosimetric effect of calculation grid size on stereotactic body radiation therapy of lung cancer in helical tomotherapy planning system
Xia-Yu HANG ; Wan-Rong JIANG ; Yi-Kun LI ; Jun HU ; Yan ZHANG ; Ruo-Qi CAO ; Nan XU ; Lei WANG ; Jin-Da ZHOU ; Xiang-Dong SUN
Chinese Medical Equipment Journal 2024;45(2):52-57
Objective To investigate the dosimetric effects of different calculation grid size(CGS)in helical tomotherapy(HT)planning system on stereotactic body radiation therapy(SBRT)for non-small cell lung cancer(NSCLC).Methods Nine NSCLC patients receiving radiation therapy for the first time at some hospital from March 2019 to December 2022 were selected as the subjects.SBRT planning was carried out through the HT system with three different CGS plans(Fine,Normal,and Coarse)and the same pitch,modulation factor(MF)and optimization conditions,and the target area indexes of the three CGS plans were compared including conformity index(CI),homogeneity index(HI),dosimetric parameters of the organ at risk(OAR),point dose verification pass rate,treatment time,number of monitor units and Sinograms.SPSS 22.0 was used for statistical analysis.Results For target area HI,there weres significant differences between CGS Fine plan and Coarse plan and between CGS Normal plan and Coarse plan(P<0.05),while no statistical differences were found between CGS Fine plan and Normal plan(P>0.05).For target area CI,there were significant differences between CGS Fine plan and Coarse plan(P<0.05),while no statistical differences were found between CGS Fine plan and Normal plan and between CGS Normal plan and Coarse plan(P>0.05).For OAR dosimetric parameters,CGS Fine plan and Coarse plan had significant differences in heart Dmax and Dmean,esophageal Dmax and Dmean,V5,V20,V30 and Dmean of the whole lung and affected lung,V5 and Dmax of the affected lung and heart V10 and V30(P<0.05),CGS Normal plan and Coarse plan had obvious differences in esophageal Dmax(P<0.05),and the remained dosimetric parameters were not statistically significant(P>0.05).Fine,Normal and Coarse plans had the point dose verifica-tion pass rates being 0.96%,1.50%and 1.77%,respectively.In terms of treatment time and number of monitor units,there were significant differences between Fine plan and Coarse plan(P<0.05)while no statistical differences were found between Fine and Normal plans and between Normal and Coarse plans(P>0.05).Sinograms analyses showed Fine plan had evenly distributed segment color gradient,Coarse plan had areas of very dark and very light color gradients and Normal plan was somewhere in between.Conclusion Low CGS has to be used as much as possible to obtain accurate dose distribution during SBRT planning for NSCLC patients,which contributes to the execution of the radiation therapy plan and the prevention of ad-verse effects.[Chinese Medical Equipment Journal,2024,45(2):52-57]

Result Analysis
Print
Save
E-mail