1.Effect of targeted silencing of DNMT3A on collagen deposition, proliferation and migration activity of mouse lung fibroblasts
Xianchen Wang ; Junbo You ; Hui Ling ; Jiahao Fan ; Qi Chen ; Hui Tao ; Jiming Sha
Acta Universitatis Medicinalis Anhui 2025;60(1):66-72
Objective:
To investigate the effect of targeted silencing of DNA methyltransferase 3A(DNMT3A) on collagen deposition, proliferation and migration activity of mouse lung fibroblasts(PFs).
Methods:
In order to ensure the proliferation and migration activity of primary fibroblasts, the lung tissues of neonatal C57 suckling mice were taken, PFs were extracted after being sheared, and the morphology was observed and identified under the microscope. PFs cells were activated by 5 ng/ml TGF-β1for 24 h after cell attachment, and DNMT3A silencing model was constructed by small interfering RNA; The experiment was divided into control group, TGF-β1group, TGF-β1+ siRNA-NC group and TGF-β1+ siRNA-DNMT3A group. The protein expressions of DNMT3A, α-smooth muscle actin(α-SMA) and Collagen Ⅰ were detected by Western blot; Real time quantitative reverse transcription polymerase chain reaction(RT-qPCR) was used to detect the mRNA expression changes ofDNMT3A,α-SMAandCollagenⅠ. The proliferation ability of PFs was detected by CCK-8 and EdU staining; the migration ability of PFs was detected by scratch test and Transwell migration test.
Results:
Compared with the control group, TGF-β1induced the increase of DNMT3A in the activated PFs cell group(P<0.01), the protein and mRNA levels of fibrosis and proliferation related indicators α-SMA and Collagen Ⅰ also increased(allP<0.05), and the proliferation and migration ability of PFs increased(allP<0.000 1). Compared with the siRNA-NC group, the protein expression levels of DNMT3A(P<0.000 1) and related indicators α-SMA(P<0.01) and Collagen Ⅰ(P<0.01) significantly decreased in the DNMT3A silencing group by Western blot, and the mRNA levels ofDNMT3A,α-SMAandCollagenⅠby RT-qPCR also decreased(allP<0.001), and the proliferation(P<0.01) and migration ability(P<0.05) of PFs cells decreased compared with the control group.
Conclusion
Silencing DNMT3A can inhibit the deposition of collagen and the proliferation of PFs. DNMT3A can promote the proliferation and migration of PFs, and then promote the activation of PFs and the development of pulmonary fibrosis. This process may be regulated by DNA methylation modification.
2.Recent advances in lamellar liquid crystal emulsification methods encapsulating natural active substances for functional cosmetics
Yi ZHANG ; Wei CHEN ; Yan-qi HAN ; Qian-wen SUN ; Yue GAO ; Jun YE ; Hong-liang WANG ; Li-li GAO ; Yu-ling LIU ; Yan-fang YANG
Acta Pharmaceutica Sinica 2024;59(2):350-358
Due to the high similarity with the lipid layer between human skin keratinocytes, functional cosmetics with layered liquid crystal structure prepared by liquid crystal emulsification technology encapsulating natural active substances have become a hot research topic in recent years. This type of functional cosmetic often has a fresh and natural skin feel, excellent skin barrier repair function and efficient moisturizing effect, etc., showing great potential in cosmetic application. However, the present research on the application of liquid crystal emulsification technology to functional cosmetics is still in the initial stage, and there are fewer relevant reports with reference values. Based on the mentioned above, this review provides a comprehensive summary of functional cosmetics with layered liquid crystal structures prepared by liquid crystal emulsification technology from the following aspects: the structure of human skin, the composition of lamellar liquid crystal, the advantages of liquid crystal emulsification technology containing natural active substances used in the field of functional cosmetics, the preparation process, main components, influencing factors during the preparation and the market functional cosmetics with lamellar liquid crystal structure. Finally, the prospect of the application of liquid crystal emulsification technology in functional cosmetics is presented, to provide useful references for those engaged in the research of liquid crystal emulsification technology-related functional cosmetics.
3.Self monitoring of blood glucose combined with digital diabetes management to improve clinical relevant indicators in type 2 diabetes
Jun YANG ; Qiuwen ZHU ; Ling WANG ; Yanni WU ; Xia QI ; Mengfei JIANG ; Xiaoyong YAN ; Hongyun MIAO
Chongqing Medicine 2024;53(1):79-83,88
Objective To compare the influence between self-monitoring of blood gluocose(SMBG)combined with digital diabetes management and traditional management mode on the related clinical indexes in the patients with type 2 diabetes mellitus(T2DM).Methods A total of 100 patients with T2DM treated in the endocrinology and metabolism outpatient department of this hospital from January 2022 to June 2022 and meeting the inclusion criteria of this study were successively included.They were divided into the experimental group and control group.The experimental group was managed by SMBG combined with digital diabetes man-agement mode,while the control group adopted the traditional management mode,the outpatient clinic follow up once a month.After 6 months of follow-up,fasting blood glucose,glycosylated hemoglobin(HbA1c),low density lipoprotein cholesterol(LDL-C)and urinary microalbumin/creatinine ratio(UACR)were compared between the two groups.Results The FBG,HbA1c,LDL-C,and UACR of the experimental group decreased after intervention when compared with baseline.Compared with the control group,the FBG[8.7(7.7,9.2)mmol/L vs.10.8(8.8,12.7)mmol/L,Z=-4.660,P<0.001],HbA1c[6.3%(5.3,7.8)%vs.8.5%(7.2,10.0)%,Z=-5.130,P<0.001],LDL-C[2.6(1.8,3.1)mmol/L vs.3.3(2.6,4.0)mmol/L,Z=-4.112,P<0.001],UACR[16.1(3.5,46.5)mg/g vs.58.4(11.9,108.0)mg/g,Z=-2.220,P=0.026]for patients in the expriemental group after intervention were significantly decreased.Conclusion SMBG combined with digital diabetes management model can significantly improve the clinical indicators of patients.
4.The Regulatory Function of ADAR1-mediated RNA Editing in Hematological Malignancies
Xing-Yu WAN ; Huan-Ping GUO ; Rui-Hao HUANG ; Xiao-Qi WANG ; Ling-Yu ZENG ; Tao WU ; Lin XIA ; Xi ZHANG
Progress in Biochemistry and Biophysics 2024;51(2):300-308
RNA editing, an essential post-transcriptional reaction occurring in double-stranded RNA (dsRNA), generates informational diversity in the transcriptome and proteome. In mammals, the main type of RNA editing is the conversion of adenosine to inosine (A-to-I), processed by adenosine deaminases acting on the RNAs (ADARs) family, and interpreted as guanosine during nucleotide base-pairing. It has been reported that millions of nucleotide sites in human transcriptome undergo A-to-I editing events, catalyzed by the primarily responsible enzyme, ADAR1. In hematological malignancies including myeloid/lymphocytic leukemia and multiple myeloma, dysregulation of ADAR1 directly impacts the A-to-I editing states occurring in coding regions, non-coding regions, and immature miRNA precursors. Subsequently, aberrant A-to-I editing states result in altered molecular events, such as protein-coding sequence changes, intron retention, alternative splicing, and miRNA biogenesis inhibition. As a vital factor of the generation and stemness maintenance in leukemia stem cells (LSCs), disordered RNA editing drives the chaos of molecular regulatory network and ultimately promotes the cell proliferation, apoptosis inhibition and drug resistance. At present, novel drugs designed to target RNA editing(e.g., rebecsinib) are under development and have achieved outstanding results in animal experiments. Compared with traditional antitumor drugs, epigenetic antitumor drugs are expected to overcome the shackle of drug resistance and recurrence in hematological malignancies, and provide new treatment options for patients. This review summarized the recent advances in the regulation mechanism of ADAR1-mediated RNA editing events in hematologic malignancies, and further discussed the medical potential and clinical application of ADAR1.
5.Current applications of transcatheter edge-to-edge tricuspid valve repair
Chun-Mei XIE ; Meng-Qi SHEN ; Da ZHU ; Shou-Zheng WANG ; Zhi-Ling LUO ; Xiang-Bin PAN
Chinese Journal of Interventional Cardiology 2024;32(1):45-50
Tricuspid regurgitation(TR)is a common heart valve disease.According to the pathogenesis,TR can be divided into primary(organic)and secondary(functional)regurgitation,of which functional TR accounts for more than 90%.Patients with severe TR have poor prognosis and poor drug treatment,and surgery(valvuloplasty)is the main treatment.At present,transcatheter edge-to-edge tricuspid valve repair(T-TEER)has become an essential program of transcatheter treatment for TR,providing minimally invasive treatment for TR patients who cannot undergo surgery or are at high risk of surgery.T-TEER reduces the degree of regurgitation by clamping leaflets,and is currently in the early stage of research and development exploration and clinical validation,mainly for functional TR.T-TEER devices have also made significant progress(TriClip,PASCAL),and Chinese-made novel-designed T-TEER devices are also undergoing clinical trials(DragonFly-TTM,SQ-Kyrin-TTM,NeoBlazarTM).This paper reviews the current applications and research progress of T-TEER.
6.Exploration on the Biological Implications of"Earth Deficiency and Wood Depression"Pathogenesis of Hypertension from Intestinal Flora-bile Acid Axis
Meilong SI ; Hua JIN ; Minke LIU ; Yu WANG ; Qiuju ZHANG ; Shuangfang LIU ; Bishi LING ; Shangwen QI
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(3):13-18
There is a bidirectional relationship between intestinal flora and bile acids,and the imbalance of intestinal flora-bile acid axis metabolism is closely related to hypertension.Based on classical TCM literature and clinical practice,this article found that"earth deficiency"is the important pathological basis of hypertension,"wood depression"is the initiating factor of hypertension,and"earth deficiency and wood depression"is the key pathogenesis of hypertension.Combined with the research results of modern medicine and molecular biology,it is considered that the imbalance of intestinal flora and abnormal bile acid metabolism are closely related to the"earth deficiency"and"wood depression"of TCM respectively,and the imbalance of intestinal flora-bile acid axis coincides with the"earth deficiency and wood depression"of TCM in the process of hypertension.It is of great theoretical and practical significance to explore the biological connotation of hypertension"earth deficiency and wood depression"from the perspective of intestinal flora-bile acid axis for guiding TCM to prevent and treat hypertension.
7.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
8.Effect of Zhengan Xifengtang on Blood Pressure and Fecal Microflora of Spontaneously Hypertensive Rats
Shuangfang LIU ; Hua JIN ; Bishi LING ; Shangwen QI ; Meilong SI ; Qiuju ZHANG ; Yu WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(13):76-85
ObjectiveTo observe the effect of Zhengan Xifengtang on blood pressure and fecal microflora of spontaneously hypertensive rats (SHRs). MethodA total of 75 male SHRs aged nine weeks were randomly divided into SHR group, Benazepril group (1.00 mg·kg-1·d-1), high-dose Zhengan Xifengtang group (34.5 g·kg-1·d-1), medium-dose Zhengan Xifengtang group (17.25 g·kg-1·d-1), and low-dose Zhengan Xifengtang group (8.625 g·kg-1·d-1). A total of 15 male Wistar-Kyoto (WKY) rats aged nine weeks were selected as the normal group. The normal group and SHR group were administrated with an equal volume of distilled water for eight weeks. During the administration, the blood pressure of the rats was measured regularly. After the intervention, fresh feces were collected with a sterile frozen storage tube, and 16S amplicon information was collected and analyzed. Plasma, hippocampus, and ileum of rats were collected for ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) detection. ResultZhengan Xifengtang decreased the systolic blood pressure and diastolic blood pressure of SHRs. Compared with the SHR group, Zhengan Xifengtang decreased the diversity of fecal microflora of SHRs. At the phylum level, Zhengan Xifengtang increased the relative abundance of SHR Verrucomicrobia and Actinobacteria and decreased the relative abundance of Synergistetes, Tenericutes, and Candidatus Saccharibacteria. Compared with the SHR group, Zhengan Xifengtang increased the relative abundance of Blautia wexlerae, Fusicatenibacter saccharivorans, and Akkermansia muciniphila and decreased the relative abundance of Clostridium lavalense, Intestinimonas butyriciproducens, Acetatifactor muris, Alloprevotella rava, and Oscillibacter valericigenes. Spearman correlation analysis showed that the systolic blood pressure of rats was negatively correlated with the relative abundance of Ethanoligenens, Aerococcus, Butyrivibrio, Olsenella, Bifidobacterium, Clostridium XIVb, Allobaculum, and Fusicatenibacter and positively correlated with the relative abundance of Alloprevotella. Zhengan Xifengtang increased the contents of plasma, hippocampal 5-hydroxy tryptamine(5-HT), and 5-hydroxyindole acetic acid(5-HIAA) in SHRs and decreased the contents of 5-HT and 5-HIAA in the ileum, and the content of 5-HT in the hippocampus was negatively correlated with that in the ileum. ConclusionZhengan Xifengtang can reduce the blood pressure of SHRs, which may be related to reducing the diversity of SHR microflora, regulating the structure of the microflora, increasing the relative abundance of 5-HT and short-chain fatty acids bacteria, and lowering the relative abundance of pathogenic bacteria related to intestinal inflammation.
9.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Paeoniae Radix Alba in Qizhi Weitong Granules
Bing QI ; Xi LUO ; Ying ZHENG ; Ying MENG ; Shuai WANG ; Yongrui BAO ; Tianjiao LI ; Ling HAN ; Xinying SHU ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):169-175
ObjectiveTo elucidate the active compounds for the anti-inflammatory and analgesic effects of Paeoniae Radix Alba from structure-activity omics. MethodOn the basis of the previous in vitro efficacy study by our research group, a mouse model of foot swelling was induced by methyl aldehyde and used to study the anti-inflammatory and analgesic effects of total glycosides of Paeoniae Radix Alba in vivo. The core targets of the active compounds for the anti-inflammatory and analgesic effects of Paeoniae Radix Alba were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Online Mendelian Inheritance in Man (OMIM), and Search Tool for Recurring Instances of Neighbouring Genes (STRING). Molecular docking was conducted for the total glucosides of Paeoniae Radix Alba with the core targets, and the key core targets with high binding affinity were screened out according to the comprehensive score of each target and active structure. The structure-activity relationship was analyzed with targets as a bridge through the combination of compound structures and pharmacological effects. ResultThe total glucosides of Paeoniae Radix Alba had good anti-inflammatory and analgesic effects in vivo. The core targets of 23 active components of Paeoniae Radix Alba were epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), vascular endothelial growth factor A (VEGFA), cellular tumor antigen p53 (TP53), and proto-oncogene transcription factor (JUN). According to the structure of the parent nucleus, there were 16 pinane monoterpene glycosides, 4 pinene monoterpene glycosides, 2 monoterpene lactone glycosides, and 1 monoterpene ketone. The key core targets screened out by molecular docking were EGFR and STAT3. The structure-activity analysis of the active compound structures and the key core targets showed that the introduction of ketone group and benzene ring group on the parent nucleus affected the binding activity. ConclusionThis study analyzed the material basis for the anti-inflammatory and analgesic effects of total glycosides of Paeoniae Radix Alba from structure-activity omics, providing new ideas and methods for revealing the pharmacodynamic substances in traditional Chinese medicine.
10.Discrete element modeling and breakage behavior analysis of oral solid dosage form particles
Lin-xiu LUO ; Tian-bing GUAN ; An-qi LUO ; Zeng LIU ; Yu-ting WANG ; Yan-ling JIANG ; Zheng LU ; Jing-cao TANG ; Shuang-kou CHEN ; Hui-min SUN ; Chuan-yun DAI
Acta Pharmaceutica Sinica 2024;59(4):1057-1066
The breakage pattern of unit particles during the production of oral solid dosage forms (OSD) is closely related to the quality of intermediate or final products. To accurately characterize the particles and study the evolution law of particle breakage, the Bonding model of the discrete element method (DEM) was used to investigate the breakage patterns of model parameters, particle shape and process conditions (loading mode and loading rate) on the dynamic breakage, force-time curve, breakage rate, maximum breakage size ratio and fracture strength of particles. The results showed that the particle breakage force was positively correlated with normal strength and bonded disk scale, negatively correlated with normal stiffness per unit area and tangential stiffness per unit area, and weakly correlated with tangential strength. The particle breakage rate was negatively correlated with the aspect ratio of the particles, and the maximum breakage size ratio was positively correlated with the aspect ratio of the particles; among the three loading modes, the breakage rate of compression breakage model was the largest, the breakage rate of shear breakage model was the second largest, and the breakage rate of wear breakage model was the smallest; the maximum breakage size ratio was positively correlated with the loading rate, the loading mode and the loading rate had no mutual influence on particle breakage rate, but had mutual influence on the maximum breakage size ratio. The research results will provide a theoretical basis for the shift of OSD from batch manufacturing to advanced manufacturing.


Result Analysis
Print
Save
E-mail