1.Prognostic Significance of KMT2D Gene Mutation and Its Co-mutated Genes in Patients with Diffuse Large B-Cell Lymphoma
Mutibaier·MIJITI ; Xiaolong QI ; Renaguli·ABULAITI ; Wenxin TIAN ; Sha LIU ; Weiyuan MA ; Zengsheng WANG ; Li AN ; Min MAO ; Muhebaier·ABUDUER ; Yan LI
Cancer Research on Prevention and Treatment 2025;52(2):127-132
Objective To explore the clinical characteristics of patients with diffuse large B-cell lymphoma (DLBCL) accompanied with KMT2D gene mutation and the impact of its co-mutated genes on prognosis. Methods Clinical data of 155 newly diagnosed DLBCL patients were obtained. The second-generation sequencing method was used to detect 475 hotspot genes, including KMT2D mutation. Patients were divided into the KMT2D mutation group and KMT2D wild-type group based on the presence or absence of KMT2D gene mutation. Clinical characteristics, differences in co-mutated genes, and survival differences between the two groups were compared. Results The frequency of KMT2D mutation was 31%, which is predominantly observed in elderly patients (P=0.07) and less in the double-expressor phenotype (P=0.07). Compared with the KMT2D wild-type group, KMT2D gene mutation was associated with higher co-mutation rates of CDKN2A (OR=2.82, P=0.01) and BCL2 (OR=3.84, P=0.016), while being mutually exclusive with MYC gene mutation (OR=0.11, P=0.013). In univariate survival analysis, no statistically significant difference in overall survival (OS) was found between the KMT2D mutation group and the wild-type group (P=0.54). Further analysis of the prognostic significance of KMT2D with other gene mutations indicated that patients with KMT2DmutBTG2mut had poorer OS than those with KMT2Dwt BTG2mut (P=0.07) and KMT2Dwt BTG2wt (P=0.05). On the contrary, patients with KMT2Dmut CD79Bmut had better OS than those with KMT2Dmut CD79Bwt (P=0.09), with no prognostic impact observed for other co-mutated genes. Multivariate Cox regression analysis revealed that Ann Arbor stages Ⅲ and Ⅳ (HR=2.751, 95%CI: 1.169-6.472, P=0.02), elevated LDH levels (HR=2.461, 95%CI: 1.396-4.337, P=0.002), Ki-67 index>80% (HR=1.875, 95%CI: 1.066-3.299, P=0.029), and KMT2DmutBTG2mut(HR=4.566, 95%CI: 1.348-15.471, P=0.015) were independent risk factors for OS in patients with DLBCL (P<0.05). Conclusion DLBCL patients with KMT2D mutation often have multiple gene mutations, among which patients with a co-mutated BTG2 gene have poor prognosis.
2.Pharmaceutical care for a patient with empagliflozin-induced euglycemic diabetic ketoacidosis
Lili YANG ; Qi LI ; Hui WANG ; Ruilong GAO ; Min MAO
China Pharmacy 2025;36(2):214-218
OBJECTIVE To provide a reference for the pharmaceutical care of a patient with type 2 diabetes mellitus (T2DM) and limb-girdle muscular dystrophy (LGMD) who developed euglycemic diabetic ketoacidosis (euDKA) after taking empagliflozin. METHODS Clinical pharmacists provided pharmaceutical care for a patient with T2DM and LGMD who developed euDKA after taking empagliflozin. According to the patient’s recent use of medications and his conditions, clinical pharmacists assessed the correlation between euDKA and empagliflozin as “very likely”. As to euDKA, clinical pharmacists suggested discontinuing empagliflozin and metformin, and giving intravenous infusion of 10% Glucose injection instead of 5% Glucose injection for fluid resuscitation. Clinical pharmacists monitored the patient’s laboratory indicators such as arterial blood gas analysis, blood/urine ketones and electrolytes. They assisted physicians to decide when to stop intravenous supplements of liquid and insulin. Clinical pharmacists also assisted physicians to adjust the antidiabetic drugs and educated the patient to avoid empagliflozin or other sodium- glucose linked transporter 2 inhibitors (SGLT2i). RESULTS Physicians adopted the suggestions of clinical pharmacists. After treatment, the patient’s condition improved, and he was allowed to be discharged with medication. CONCLUSIONS euDKA is a relatively rare and serious adverse reaction associated with SGLT2i, and the patients with LGMD are susceptible to euDKA. Clinical pharmacists assist physicians in developing personalized medication plans by evaluating the association between euDKA and empagliflozin, adjusting medication regimens,conducting pharmaceutical monitoring,and other pharmaceutical services. Meanwhile, they provide medication education to patients to ensure their medication safety.
3.Pharmaceutical care for a patient with empagliflozin-induced euglycemic diabetic ketoacidosis
Lili YANG ; Qi LI ; Hui WANG ; Ruilong GAO ; Min MAO
China Pharmacy 2025;36(2):214-218
OBJECTIVE To provide a reference for the pharmaceutical care of a patient with type 2 diabetes mellitus (T2DM) and limb-girdle muscular dystrophy (LGMD) who developed euglycemic diabetic ketoacidosis (euDKA) after taking empagliflozin. METHODS Clinical pharmacists provided pharmaceutical care for a patient with T2DM and LGMD who developed euDKA after taking empagliflozin. According to the patient’s recent use of medications and his conditions, clinical pharmacists assessed the correlation between euDKA and empagliflozin as “very likely”. As to euDKA, clinical pharmacists suggested discontinuing empagliflozin and metformin, and giving intravenous infusion of 10% Glucose injection instead of 5% Glucose injection for fluid resuscitation. Clinical pharmacists monitored the patient’s laboratory indicators such as arterial blood gas analysis, blood/urine ketones and electrolytes. They assisted physicians to decide when to stop intravenous supplements of liquid and insulin. Clinical pharmacists also assisted physicians to adjust the antidiabetic drugs and educated the patient to avoid empagliflozin or other sodium- glucose linked transporter 2 inhibitors (SGLT2i). RESULTS Physicians adopted the suggestions of clinical pharmacists. After treatment, the patient’s condition improved, and he was allowed to be discharged with medication. CONCLUSIONS euDKA is a relatively rare and serious adverse reaction associated with SGLT2i, and the patients with LGMD are susceptible to euDKA. Clinical pharmacists assist physicians in developing personalized medication plans by evaluating the association between euDKA and empagliflozin, adjusting medication regimens,conducting pharmaceutical monitoring,and other pharmaceutical services. Meanwhile, they provide medication education to patients to ensure their medication safety.
4.Effect of oxymatrine on expression of stem markers and osteogenic differentiation of periodontal ligament stem cells
Jing LUO ; Min YONG ; Qi CHEN ; Changyi YANG ; Tian ZHAO ; Jing MA ; Donglan MEI ; Jinpeng HU ; Zhaojun YANG ; Yuran WANG ; Bo LIU
Chinese Journal of Tissue Engineering Research 2025;29(19):3992-3999
BACKGROUND:Human periodontal ligament stem cells are potential functional cells for periodontal tissue engineering.However,long-term in vitro culture may lead to reduced stemness and replicative senescence of periodontal ligament stem cells,which may impair the therapeutic effect of human periodontal ligament stem cells. OBJECTIVE:To investigate the effect of oxymatrine on the stemness maintenance and osteogenic differentiation of periodontal ligament stem cells in vitro,and to explore the potential mechanism. METHODS:Periodontal ligament stem cells were isolated from human periodontal ligament tissues by tissue explant enzyme digestion and cultured.The surface markers of mesenchymal cells were identified by flow cytometry.Periodontal ligament stem cells were incubated with 0,2.5,5,and 10 μg/mL oxymatrine.The effect of oxymatrine on the proliferation activity of periodontal ligament stem cells was detected by CCK8 assay.The appropriate drug concentration for subsequent experiments was screened.Western blot assay was used to detect the expression of stem cell non-specific proteins SOX2 and OCT4 in periodontal ligament stem cells.qRT-PCR and western blot assay were used to detect the expression levels of related osteogenic genes and proteins in periodontal ligament stem cells. RESULTS AND CONCLUSION:(1)The results of CCK8 assay showed that 2.5 μg/mL oxymatrine significantly enhanced the proliferative activity of periodontal stem cells,and the subsequent experiment selected 2.5 μg/mL oxymatrine to intervene.(2)Compared with the blank control group,the protein expression level of SOX2,a stem marker of periodontal ligament stem cells in the oxymatrine group did not change significantly(P>0.05),and the expression of OCT4 was significantly up-regulated(P<0.05).(3)Compared with the osteogenic induction group,the osteogenic genes ALP,RUNX2 mRNA expression and their osteogenic associated protein ALP protein expression of periodontal ligament stem cells were significantly down-regulated in the oxymatrine+osteogenic induction group(P<0.05).(4)The oxymatrine up-regulated the expression of stemness markers of periodontal ligament stem cells and inhibited the bone differentiation of periodontal ligament stem cells,and the results of high-throughput sequencing showed that it may be associated with WNT2,WNT16,COMP,and BMP6.
5.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
6.Pharmacological effect and mechanism of tannic acids in Paeoniae Radix Alba.
Jia-Xin DIAO ; Qi-Tong ZHENG ; Meng-Yao CHEN ; Jiang-Chuan HONG ; Min HAO ; Qing-Mei FENG ; Jun-Qi HU ; Xia-Nan SANG ; Gang CAO
China Journal of Chinese Materia Medica 2025;50(6):1471-1483
The chemical composition of Paeoniae Radix Alba(PRA) is complex, with primary secondary metabolites including monoterpenoids, tannins, triterpenoids, and flavonoids. In previous studies on the material basis of PRA, it was found that, in addition to the widely studied characteristic monoterpene glycosides, tannic acid components also play an important role in the efficacy of PRA. However, their pharmacological effects have not been thoroughly investigated. This paper reviews the tannic acid components in PRA, including pentagaloyl glucose(PGG), tetragaloyl glucose(TGG), trigaloyl glucose(TriGG), and gallic acid, along with their structures, properties, and characteristics to provide a detailed discussion of their pharmacological activities and related mechanisms, aiming to offer a theoretical basis for the material basis research and clinical application of PRA.
Paeonia/chemistry*
;
Tannins/chemistry*
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Plant Extracts
7.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
8.Mechanism of Xiangsha Liujunzi Decoction in improving autophagy in interstitial cells of Cajal of rats with functional dyspepsia by regulation of IRE1/ASK1/JNK pathway.
Ming-Kai LYU ; Yong-Qiang DUAN ; Jin JIN ; Wen-Chao SHAO ; Qi WU ; Yong TIAN ; Min BAI ; Ying-Xia CHENG
China Journal of Chinese Materia Medica 2025;50(8):2237-2244
This study explored the mechanism of Xiangsha Liujunzi Decoction(XSLJZD) in the treatment of functional dyspepsia(FD) based on inositol-requiring enzyme 1(IRE1)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway-mediated autophagy in interstitial cells of Cajal(ICC). Forty-eight SPF-grade male SD suckling rats were randomly divided into a blank group and a modeling group, and the integrated modeling method(iodoacetamide gavage + disturbance of hunger and satiety + swimming exhaustion) was used to replicate the FD rat model. After the model replications were successfully completed, the rats were divided into a model group, high-dose, medium-dose, and low-dose groups of XSLJZD(12, 6, and 3 g·kg~(-1)·d~(-1)), and a positive drug group(mosapride of 1.35 mg·kg~(-1)·d~(-1)), and the intervention lasted for 14 days. The gastric emptying rate and intestinal propulsion rate of rats in each group were measured. The histopathological changes in the gastric sinus tissue of rats in each group were observed by hematoxylin-eosin(HE) staining. The ultrastructure of ICC was observed by transmission electron microscopy. The immunofluorescence double staining technique was used to detect the protein expression of phospho-IRE1(p-IRE1), TNF receptor associated factors 2(TRAF2), phospho-ASK1(p-ASK1), phospho-JNK(p-JNK), p62, and Beclin1 in ICC of gastric sinus tissue of rats in each group. Western blot was used to detect the related protein expression of gastric sinus tissue of rats in each group. Compared with those in the blank group, the rats in the model group showed decreased body weight, gastric emptying rate, and intestinal propulsion rate, and transmission electron microscopy revealed damage to the endoplasmic reticulum structure and increased autophagosomes in ICC. Immunofluorescence staining revealed that the ICC of gastric sinus tissue showed a significant elevation of p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins and a significant reduction of p62 protein. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. Compared with the model group, the body weight of rats in the high-dose and medium-dose groups of XSLJZD was increased, and the gastric emptying rate and intestinal propulsion rate were increased. Transmission electron microscopy observed amelioration of structural damage to the endoplasmic reticulum of ICC and reduction of autophagosomes, and the p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins in the ICC of gastric sinus tissue were significantly decreased. The p62 protein was significantly increased. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. XSLJZD can effectively treat FD, and its specific mechanism may be related to the inhibition of the expression of molecules related to the endoplasmic reticulum stress IRE1/ASK1/JNK pathway in ICC and the improvement of autophagy to promote gastric motility in ICC.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Autophagy/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Interstitial Cells of Cajal/metabolism*
;
Dyspepsia/physiopathology*
;
Protein Serine-Threonine Kinases/genetics*
;
MAP Kinase Kinase Kinase 5/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Humans
;
Endoribonucleases/genetics*
;
Multienzyme Complexes
9.Research progress in traditional Chinese medicine treatment of kidney-Yang deficiency syndrome by regulating neuro-endocrine-immune system.
Xiao YANG ; Jia-Geng GUO ; Yu DUAN ; Zhen-Dong QIU ; Min-Qi CHEN ; Wei WEI ; Xiao-Tao HOU ; Er-Wei HAO ; Jia-Gang DENG
China Journal of Chinese Materia Medica 2025;50(15):4153-4165
Kidney-Yang deficiency syndrome is a common geriatric disease that underlies chronic conditions such as diabetic nephropathy, chronic kidney disease, and osteoporosis. As age progresses, the kidney-Yang deficiency syndrome showcases increasingly pronounced manifestations, emerging as a key factor in the comorbidities experienced by elderly patients and affecting their quality of life and overall health status. Traditional Chinese medicine(TCM) has been extensively utilized in the treatment of kidney-Yang deficiency syndrome, with Epimedii Folium, Cinnamomi Cortex, and Lycii Fructus widely used in clinical settings. Despite the complexity of the molecular mechanisms involved in treating kidney-Yang deficiency syndrome, the potential therapeutic value of TCM remains compelling. Delving into the mechanisms of TCM treatment of kidney-Yang deficiency syndrome by regulating the neuro-endocrine-immune system can provide a scientific basis for targeted treatments of this syndrome and lay a foundation for the modernization of TCM. The pathophysiology of kidney-Yang deficiency syndrome involves multiple systems, including the interaction of the neuro-endocrine-immune system, the decline in renal function, the intensification of oxidative stress responses, and energy metabolism disorders. Understanding these mechanisms and their interrelationships can help untangle the etiology of kidney-Yang deficiency syndrome, aiding clinicians in making more precise diagnoses and treatments. Furthermore, the research on the specific applications of TCM in research on these pathological mechanisms can enhance the international recognition and status of TCM, enabling it to exert a greater global influence.
Humans
;
Yang Deficiency/physiopathology*
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Kidney Diseases/physiopathology*
;
Neurosecretory Systems/physiopathology*
;
Animals
;
Kidney/physiopathology*
;
Endocrine System/physiopathology*
;
Immune System/physiopathology*
10.Immunotherapy for Lung Cancer
Pei-Yang LI ; Feng-Qi LI ; Xiao-Jun HOU ; Xue-Ren LI ; Xin MU ; Hui-Min LIU ; Shou-Chun PENG
Progress in Biochemistry and Biophysics 2025;52(8):1998-2017
Lung cancer is the most common malignant tumor worldwide, ranking first in both incidence and mortality rates. According to the latest statistics from the International Agency for Research on Cancer (IARC), approximately 2.5 million new cases and around 1.8 million deaths from lung cancer occurred in 2022, placing a tremendous burden on global healthcare systems. The high mortality rate of lung cancer is closely linked to its subtle early symptoms, which often lead to diagnosis at advanced stages. This not only complicates treatment but also results in substantial economic losses. Current treatment options for lung cancer include surgery, radiotherapy, chemotherapy, targeted drug therapy, and immunotherapy. Among these, immunotherapy has emerged as the most groundbreaking advancement in recent years, owing to its unique antitumor mechanisms and impressive clinical benefits. Unlike traditional therapies such as radiotherapy and chemotherapy, immunotherapy activates or enhances the patient’s immune system to recognize and eliminate tumor cells. It offers advantages such as more durable therapeutic effects and relatively fewer toxic side effects. The main approaches to lung cancer immunotherapy include immune checkpoint inhibitors, tumor-specific antigen-targeted therapies, adoptive cell therapies, cancer vaccines, and oncolytic virus therapies. Among these, immune checkpoint inhibitors and tumor-specific antigen-targeted therapies have received approval from the U.S. Food and Drug Administration (FDA) for clinical use in lung cancer, significantly improving outcomes for patients with advanced non-small cell lung cancer. Although other immunotherapy strategies are still in clinical trials, they show great potential in improving treatment precision and efficacy. This article systematically reviews the latest research progress in lung cancer immunotherapy, including the development of novel immune checkpoint molecules, optimization of treatment strategies, identification of predictive biomarkers, and findings from recent clinical trials. It also discusses the current challenges in the field and outlines future directions, such as the development of next-generation immunotherapeutic agents, exploration of more effective combination regimens, and the establishment of precise efficacy prediction systems. The aim is to provide a valuable reference for the continued advancement of lung cancer immunotherapy.

Result Analysis
Print
Save
E-mail