1.Effects of electroacupuncture at pterygopalatine region on NLRP3-mediated pyroptosis and inflammatory factors in allergic rhinitis rats.
Haiyang LV ; Meihui TIAN ; Shuyi SHE ; Yucheng LIU ; Lei SUN ; Wu SONG ; Yong TANG
Chinese Acupuncture & Moxibustion 2025;45(3):345-350
OBJECTIVE:
To observe the effects of electroacupuncture at the pterygopalatine region on nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-mediated pyroptosis and inflammatory factors in rats with allergic rhinitis (AR).
METHODS:
Twenty-four SD rats were randomly divided into a blank group, a model group, an acupuncture group and an electroacupuncture group, 6 rats in each group. Except for the blank group, OVA-induced AR model was established in the remaining groups. In the electroacupuncture group, the rats were treated with electroacupuncture at the bilateral pterygopalatine region, with disperse-dense wave, in frequency of 2 Hz/100 Hz and current of 0.5-1 mA, 15 min each time, once every other day, for 3 times. In the acupuncture group, the rats were treated with acupuncture at bilateral pterygopalatine region simply, without electrical stimulation. The rhinitis symptom score was observed, the pathomorphology of the nasal mucosa was observed by HE staining; the serum levels of OVA-specific immunoglobulin E (OVA-sIgE), interleukin (IL)-4, IL-6 and IL-1β were detected by ELISA; the mRNA expression of NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), cysteinyl aspartate specific proteinase-1 (caspase-1) and IL-18 in the nasal mucosa was detected by real-time PCR; the protein expression of NLRP3, ASC, caspase-1 and IL-18 in the nasal mucosa was detected by Western blot.
RESULTS:
Compared with the blank group, in the model group, the rhinitis symptom score was increased (P<0.01), the serum levels of OVA-sIgE, IL-4, IL-6 and IL-1β were increased (P<0.05), the nasal mucosa showed pathomorphology of inflammatory infiltration; the mRNA and protein expression of NLRP3, ASC, caspase-1 and IL-18 in the nasal mucosa was increased (P<0.05). Compared with the model group, in the electroacupuncture group, the rhinitis symptom score was reduced (P<0.01), the pathology of the nasal mucosa was improved; the serum levels of OVA-sIgE, IL-4, IL-6 and IL-1β were decreased (P<0.05); the mRNA and protein expression of NLRP3, ASC, caspase-1 and IL-18 in the nasal mucosa was decreased (P<0.05).
CONCLUSION
Electroacupuncture at the pterygopalatine region can exerting the anti-inflammatory effect by inhibiting NLRP3-mediated pyroptosis and inflammatory factor imbalance, thus alleviate rhinitis symptoms in AR rats.
Animals
;
Electroacupuncture
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
;
Rats
;
Rats, Sprague-Dawley
;
Rhinitis, Allergic/physiopathology*
;
Pyroptosis
;
Male
;
Acupuncture Points
;
Humans
;
Female
;
Interleukin-1beta/genetics*
;
Interleukin-18/immunology*
;
Interleukin-6/genetics*
;
Caspase 1/immunology*
2.Chidamide triggers pyroptosis in T-cell lymphoblastic lymphoma/leukemia via the FOXO1/GSDME axis.
Xinlei LI ; Bangdong LIU ; Dezhi HUANG ; Naya MA ; Jing XIA ; Xianlan ZHAO ; Yishuo DUAN ; Fu LI ; Shijia LIN ; Shuhan TANG ; Qiong LI ; Jun RAO ; Xi ZHANG
Chinese Medical Journal 2025;138(10):1213-1224
BACKGROUND:
T-cell lymphoblastic lymphoma/acute lymphoblastic leukemia (T-LBL/ALL) is an aggressive form of hematological malignancy associated with poor prognosis in adult patients. Histone deacetylases (HDACs) are aberrantly expressed in T-LBL/ALL and are considered potential therapeutic targets. Here, we investigated the antitumor effect of a novel HDAC inhibitor, chidamide, on T-LBL/ALL.
METHODS:
HDAC1, HDAC2 and HDAC3 levels in T-LBL/ALL cell lines and patient samples were compared with those in normal controls. Flow cytometry, transmission electron microscopy, and lactate dehydrogenase release assays were conducted in Jurkat and MOLT-4 cells to assess apoptosis and pyroptosis. A specific forkhead box O1 (FOXO1) inhibitor was used to rescue pyroptosis and upregulated gasdermin E (GSDME) expression caused by chidamide treatment. The role of the FOXO1 transcription factor was evaluated by dual-luciferase reporter and chromatin immunoprecipitation assays. The efficacy of chidamide in vivo was evaluated in a xenograft mouse.
RESULTS:
The expression of HDAC1, HDAC2 and HDAC3 was significantly upregulated in T-LBL/ALL. Cell viability was obviously inhibited after chidamide treatment. Pyroptosis, characterized by cell swelling, pore formation on the plasma membrane and lactate dehydrogenase leakage, was identified as a new mechanism of chidamide treatment. Chidamide triggered pyroptosis through caspase 3 activation and GSDME transcriptional upregulation. Chromatin immunoprecipitation assays confirmed that chidamide led to the increased transcription of GSDME through a more relaxed chromatin structure at the promoter and the upregulation of FOXO1 expression. Moreover, we identified the therapeutic effect of chidamide in vivo .
CONCLUSIONS
This study suggested that chidamide exerts an antitumor effect on T-LBL/ALL and promotes a more inflammatory form of cell death via the FOXO1/GSDME axis, which provides a novel choice of targeted therapy for patients with T-LBL/ALL.
Humans
;
Pyroptosis/drug effects*
;
Forkhead Box Protein O1/genetics*
;
Aminopyridines/pharmacology*
;
Animals
;
Mice
;
Benzamides/pharmacology*
;
Cell Line, Tumor
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*
;
Phosphate-Binding Proteins/metabolism*
;
Histone Deacetylase Inhibitors/pharmacology*
;
Jurkat Cells
;
Histone Deacetylases/metabolism*
;
Apoptosis/drug effects*
;
Gasdermins
3.EZH2/miR-142-3p/HMGB1 axis mediates chondrocyte pyroptosis by regulating endoplasmic reticulum stress in knee osteoarthritis.
Yang CHEN ; Shanshan DONG ; Xin ZENG ; Qing XU ; Mingwei LIANG ; Guangneng LIAO ; Lan LI ; Bin SHEN ; Yanrong LU ; Haibo SI
Chinese Medical Journal 2025;138(1):79-92
BACKGROUND:
Knee osteoarthritis (OA) is still challenging to prevent or treat. Enhanced endoplasmic reticulum (ER) stress and increased pyroptosis in chondrocytes may be responsible for cartilage degeneration. This study aims to investigate the effect of ER stress on chondrocyte pyroptosis and the upstream regulatory mechanisms, which have rarely been reported.
METHODS:
The expression of the histone methyltransferase enhancer of zeste homolog 2 (EZH2), microRNA-142-3p (miR-142-3p), and high mobility group box 1 (HMGB1) and the levels of ER stress, pyroptosis, and metabolic markers in normal and OA chondrocytes were investigated by western blotting, quantitative polymerase chain reaction, immunohistochemistry, fluorescence in situ hybridization, fluorescein amidite-tyrosine-valine-alanine-aspartic acid-fluoromethyl ketone (FAM-YVAD-FMK)/Hoechst 33342/propidium iodide (PI) staining, lactate dehydrogenase (LDH) release assays, and cell viability assessments. The effects of EZH2, miR-142-3p, and HMGB1 on ER stress and pyroptosis and the hierarchical regulatory relationship between them were analyzed by chromatin immunoprecipitation, luciferase reporters, gain/loss-of-function assays, and rescue assays in interleukin (IL)-1β-induced OA chondrocytes. The mechanistic contribution of EZH2, miR-142-3p, and HMGB1 to chondrocyte ER stress and pyroptosis and therapeutic prospects were validated radiologically, histologically, and immunohistochemically in surgically induced OA rats.
RESULTS:
Increased EZH2 and HMGB1, decreased miR-142-3p, enhanced ER stress, and activated pyroptosis in chondrocytes were associated with OA occurrence and progression. EZH2 and HMGB1 exacerbated and miR-142-3p alleviated ER stress and pyroptosis in OA chondrocytes. EZH2 transcriptionally silenced miR-142-3p via H3K27 trimethylation, and miR-142-3p posttranscriptionally silenced HMGB1 by targeting the 3'-UTR of the HMGB1 gene. Moreover, ER stress mediated the effects of EZH2, miR-142-3p, and HMGB1 on chondrocyte pyroptosis. In vivo experiments mechanistically validated the hierarchical regulatory relationship between EZH2, miR-142-3p, and HMGB1 and their effects on chondrocyte ER stress and pyroptosis.
CONCLUSIONS
A novel EZH2/miR-142-3p/HMGB1 axis mediates chondrocyte pyroptosis and cartilage degeneration by regulating ER stress in OA, contributing novel mechanistic insights into OA pathogenesis and providing potential targets for future therapeutic research.
Enhancer of Zeste Homolog 2 Protein/genetics*
;
Osteoarthritis, Knee/pathology*
;
Chondrocytes/metabolism*
;
Pyroptosis/physiology*
;
HMGB1 Protein/genetics*
;
MicroRNAs/metabolism*
;
Endoplasmic Reticulum Stress/genetics*
;
Humans
;
Animals
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Middle Aged
4.Cardiomyocyte pyroptosis inhibited by dental pulp-derived mesenchymal stem cells via the miR-19a-3p/IRF-8/MAPK pathway in ischemia-reperfusion.
Yi LI ; Xiang WANG ; Sixian WENG ; Chenxi XIA ; Xuyang MENG ; Chenguang YANG ; Ying GUO ; Zuowei PEI ; Haiyang GAO ; Fang WANG
Chinese Medical Journal 2025;138(18):2336-2346
BACKGROUND:
The protective effect of mesenchymal stem cells (MSCs) on cardiac ischemia-reperfusion (I/R) injury has been widely reported. Dental pulp-derived mesenchymal stem cells (DP-MSCs) have therapeutic effects on various diseases, including diabetes and cirrhosis. This study aimed to determine the therapeutic effects of DP-MSCs on I/R injury and elucidate the underlying mechanism.
METHODS:
Myocardial I/R injury model mice were treated with DP-MSCs or a miR-19a-3p mimic. The infarct volume, fibrotic area, pyroptosis, inflammation level, and cardiac function were measured. Cardiomyocytes exposed to hypoxia-reoxygenation were transfected with the miR-19a-3p mimic, miR-19a-3p inhibitor, or negative control. Pyroptosis and protein expression in the interferon regulatory factor 8/mitogen-activated protein kinase (IRF-8/MAPK) pathway were measured.
RESULTS:
DP-MSCs protected cardiac function in cardiac I/R-injured mice and inhibited cardiomyocyte pyroptosis. The upregulation of miR-19a-3p protected cardiac function, inhibited cardiomyocyte pyroptosis, and inhibited IRF-8/MAPK signaling in cardiac I/R-injured mice. DP-MSCs inhibited cardiomyocyte pyroptosis and the IRF-8/MAPK signaling by upregulating the miR-19a-3p levels in cardiomyocytes injured by I/R.
CONCLUSION
DP-MSCs protected cardiac function by inhibiting cardiomyocyte pyroptosis through miR-19a-3p under I/R conditions.
Animals
;
MicroRNAs/metabolism*
;
Pyroptosis/genetics*
;
Mesenchymal Stem Cells/metabolism*
;
Myocytes, Cardiac/cytology*
;
Mice
;
Male
;
Mice, Inbred C57BL
;
Dental Pulp/cytology*
;
Myocardial Reperfusion Injury/therapy*
;
MAP Kinase Signaling System/physiology*
5.Effect of Duhuo Jisheng Decoction on knee osteoarthritis model rabbits through regulation of cell pyroptosis mediated by PI3K/Akt/mTOR signaling pathway.
Lin-Qin HE ; Peng-Fei LI ; Xiao-Dong LI ; Qi-Peng CHEN ; Zong-Han TANG ; Yu-Xin SONG ; Han-Bing SONG
China Journal of Chinese Materia Medica 2025;50(1):187-197
This study aimed to investigate the underlying mechanisms of Duhuo Jisheng Decoction(DJD) in the prevention and treatment of knee osteoarthritis(KOA). Forty SPF New Zealand rabbits were randomly divided using SPSS 26.0 software into five groups: blank group, model group, low-dose DJD group, high-dose DJD group, and high-dose DJD+phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathway activator group(high-dose DJD+740Y-P group), with eight rabbits in each group. Except for the blank group, the KOA model was established in the other groups using papain injection into the knee joint cavity combined with forced flexion of the knee joint. The day after modeling, the blank group and model group were given normal saline at 10 mL·kg~(-1) by gavage, the low-dose DJD group received DJD at 8.8 g·kg~(-1) by gavage, the high-dose DJD group received DJD at 35.2 g·kg~(-1) by gavage, and the high-dose DJD+740Y-P group received DJD at 35.2 g·kg~(-1) by gavage along with 740Y-P at 0.15 μmoL·kg~(-1) injected via the auricular vein. All groups received treatment continuously for four weeks. After modeling and intervention, behavioral observations were performed for all groups, and after the intervention, imaging assessments of the knee joints were conducted. Cartilage from the knee joints was collected, and gross morphological changes were observed. Pathological changes in cartilage tissue were examined using hematoxylin-eosin(HE) staining. The results of these observations were quantitatively evaluated using the Lequesne MG score, Kellgren-Lawrence(K-L) grading, Pelletier score, and Mankin score. ELISA was used to measure the levels of interleukin-1β(IL-1β), interleukin-18(IL-18), and matrix metalloproteinase 13(MMP13) in cartilage tissue. Real-time RT-PCR was used to detect the mRNA expression levels of PI3K, Akt, mTOR, Nod-like receptor protein 3(NLRP3), cysteine protease 1(caspase-1), and gasdermin D(GSDMD) in cartilage tissue. Western blot was employed to measure the protein expression levels of PI3K, Akt, mTOR, NLRP3, caspase-1, and GSDMD. The results showed that compared with the blank group, the model group exhibited significant knee joint degeneration, increased Lequesne MG score, K-L grading, Pelletier score, and Mankin score, elevated levels of IL-1β, IL-18, and MMP13 in cartilage tissue, activation of PI3K, Akt, and mTOR phosphorylation along with increased mRNA expression levels, and elevated protein and mRNA expression levels of NLRP3, caspase-1, and GSDMD. Compared with the model group, these indicators were reversed in both the low-dose and high-dose DJD groups, with the high-dose group showing greater decline degree than the low-dose DJD group. However, compared with the high-dose DJD group, the improvements in knee joint degeneration were less pronounced in the high-dose DJD+740Y-P group, with increased Lequesne MG score, K-L grading, Pelletier score, Mankin score, elevated levels of IL-1β, IL-18, and MMP13, activation of PI3K, Akt, and mTOR phosphorylation along with increased mRNA expression, and increased protein and mRNA expression levels of NLRP3, caspase-1, and GSDMD. In conclusion, DJD is effective and safe in the treatment of KOA, and its mechanism may be related to the inhibition of PI3K/Akt/mTOR signaling pathway-mediated pyroptosis in cartilage tissue, thereby improving knee joint bone structure, reducing the inflammatory response, and preventing cartilage matrix degradation.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rabbits
;
TOR Serine-Threonine Kinases/genetics*
;
Osteoarthritis, Knee/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Signal Transduction/drug effects*
;
Male
;
Disease Models, Animal
;
Pyroptosis/drug effects*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Humans
;
Female
6.Anti-endometritis effect of carbonized Scutellariae Radix in mice induced by LPS via inhibiting cell pyroptosis through IKBKE/NLRP3 signaling axis.
Hong TAO ; Rang-Rang TANG ; Qing SU ; Li HUANG ; Li-Li LI ; De-Ling WU ; Qi HUANG
China Journal of Chinese Materia Medica 2025;50(11):3024-3034
This paper investigated the inhibitory effect of carbonized Scutellariae Radix(Cb-SR) on pyroptosis in endometrial epithelial cells of mice with endometritis and its correlation with the IKBKE/NLRP3 signaling axis. Mice model of endometritis was established by using an intrauterine injection of 10 μL polysaccharides(LPS, 5 mg·mL~(-1)), and the mice were randomly divided into model group(LPS), low-dose group of Cb-SR(L-Cb-SR, 0.55 g·kg~(-1)), medium-dose group of Cb-SR(M-Cb-SR, 1.10 g·kg~(-1)), high-dose group of Cb-SR(H-Cb-SR, 2.20 g·kg~(-1)), crude Scutellariae Radix group(Cr-SR, 1.63 g·kg~(-1)), and Fuke Qianjin Capsule group(FQC, 0.30 g·kg~(-1)), with 10 mice in each group. Ten healthy female mice were selected and injected with PBS of equal volume into the bilateral uterus, and they were set as the sham group. The mice in the drug treatment groups were given the corresponding doses of Cb-SR, Cr-SR, FQC, or physiological saline of equal volume by gavage twice a day for seven days. Thirty minutes after the last administration, each mouse was euthanized by cervical dislocation. Hematoxylin-eosin(HE) staining and transmission electron microscopy were applied to observe the histopathological morphology of the uterine tissue. Immunohistochemistry was used to detect the expression of CD38 and CD138. Myeloperoxidase(MPO) values in neutrophils were measured by the kit; Enzyme-linked immunosorbent assay(ELISA) was used to measure the secretion of interleukin-18(IL-18), interleukin-1β(IL-1β), and tumor necrosis factor-α(TNF-α). Immunofluorescence and Western blot were used to analyze the expression of the proteins related to the IKBKE/NLRP3 signaling axis. Mouse endometrial epithelial cells(MEECs) were separated and purified from the uterine tissue of pregnant female mice through in vitro experiments and injured by LPS for 24 h, and then they were cultured with Cb-SR-containing serum. The anti-endometritis effect of Cb-SR was investigated by CCK-8 assay, scanning electron microscopy, and Western blot. The results showed that Cb-SR significantly reduced MPO values, attenuated uterine tissue damage, inhibited the expression of CD38 and CD138, decreased the levels of IL-1β, IL-18, and TNF-α, and inhibited the expression of proteins associated with IKBKE/NLRP3 signaling axis in mice with endometritis. In addition, Cb-SR-containing serum reduced swelling of MEECs organelles induced by LPS, decreased the expression of inflammatory factors, and suppressed the expression of IKBKE/NLRP3 signaling axis-related proteins. These results suggest that Cb-SR can inhibit endometrial epithelial cell pyroptosis in endometritis by suppressing the IKBKE/NLRP3 signaling axis.
Animals
;
Female
;
Mice
;
Pyroptosis/drug effects*
;
Signal Transduction/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Drugs, Chinese Herbal/chemistry*
;
Endometritis/chemically induced*
;
Lipopolysaccharides/adverse effects*
;
Scutellaria baicalensis/chemistry*
;
Humans
;
Epithelial Cells/drug effects*
7.Mechanism of isorhamnetin in alleviating acute lung injury by regulating pyroptosis medicated by NLRP3/ASC/caspase-1 axis.
Ya-Lei SUN ; Yu GUO ; Xin-Yu WANG ; Ya-Su ZHANG ; Xue CHENG ; Ke ZHU ; Li-Dian CHEN ; Xiao-Dong FENG
China Journal of Chinese Materia Medica 2025;50(15):4120-4128
This study aims to explore the intervention effects of isorhamnetin(Isor) on acute lung injury(ALI) and its regulatory effects on pyroptosis mediated by the NOD-like receptor family pyrin domain containing 3(NLRP3)/apoptosis-associated speck-like protein containing a CARD(ASC)/cysteine aspartate-specific protease-1(caspase-1) axis. In the in vivo experiments, 60 BALB/c mice were divided into five groups. Except for the control group, the other groups were administered Isor by gavage 1 hour before intratracheal instillation of LPS to induce ALI, and tissues were collected after 12 hours. In the in vitro experiments, RAW264.7 cells were divided into five groups. Except for the control group, the other groups were pretreated with Isor for 2 hours before LPS stimulation and subsequent assessments. Hematoxylin-eosin(HE) staining was used to observe pathological changes in lung tissue, while lung swelling, protein levels in bronchoalveolar lavage fluid(BALF), and myeloperoxidase(MPO) levels in lung tissue were measured. Cell proliferation toxicity and viability were assessed using the cell counting kit-8(CCK-8) method. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin-1β(IL-1β), IL-6, IL-18, and tumor necrosis factor-α(TNF-α). Protein levels of NLRP3, ASC, cleaved caspase-1, and the N-terminal fragment of gasdermin D(GSDMD-N) were evaluated using immunohistochemistry, immunofluorescence, and Western blot. The results showed that in the in vivo experiments, Isor significantly improved pathological damage in lung tissue, reduced lung swelling, protein levels in BALF, MPO levels in lung tissue, and levels of inflammatory cytokines such as IL-1β, IL-6, IL-18, and TNF-α, and inhibited the high expression of the NLRP3/ASC/caspase-1 axis and the pyroptosis core gene GSDMD-N. In the in vitro experiments, the safe dose of Isor was determined through cell proliferation toxicity assays. Isor reduced cell death and inhibited the expression levels of the NLRP3/ASC/caspase-1 axis, GSDMD-N, and inflammatory cytokines. In conclusion, Isor may alleviate ALI by modulating pyroptosis mediated by the NLRP3/ASC/caspase-1 axis.
Animals
;
Pyroptosis/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Acute Lung Injury/physiopathology*
;
Mice
;
Mice, Inbred BALB C
;
Quercetin/pharmacology*
;
Caspase 1/genetics*
;
CARD Signaling Adaptor Proteins/genetics*
;
Male
;
RAW 264.7 Cells
;
Humans
;
Lung/metabolism*
8.Research progress and exploration of traditional Chinese medicine in treatment of sepsis-acute lung injury by inhibiting pyroptosis.
Wen-Yu WU ; Nuo-Ran LI ; Kai WANG ; Xin JIAO ; Wan-Ning LAN ; Yun-Sheng XU ; Lin WANG ; Jing-Nan LIN ; Rui CHEN ; Rui-Feng ZENG ; Jun LI
China Journal of Chinese Materia Medica 2025;50(16):4425-4436
Sepsis is a systemic inflammatory response caused by severe infection or trauma, and is one of the common causes of acute lung injury(ALI) and acute respiratory distress syndrome(ARDS). Sepsis-acute lung injury(SALI) is a critical clinical condition with high morbidity and mortality. Its pathogenesis is complex and not yet fully understood, and there is currently a lack of targeted and effective treatment options. Pyroptosis, a novel form of programmed cell death, plays a key role in the pathological process of SALI by activating inflammasomes and releasing inflammatory factors, making it a potential therapeutic target. In recent years, the role of traditional Chinese medicine(TCM) in regulating signaling pathways related to pyroptosis through multi-components and multi-targets has attracted increasing attention. TCM may intervene in pyroptosis by inhibiting the activation of NLRP3 inflammasomes and regulating the expression of Caspase family proteins, thus alleviating inflammatory damage in lung tissues. This paper systematically reviews the molecular regulatory network of pyroptosis in SALI and explores the potential mechanisms and research progress on TCM intervention in cellular pyroptosis. The aim is to provide new ideas and theoretical support for basic research and clinical treatment strategies of TCM in SALI.
Pyroptosis/drug effects*
;
Humans
;
Sepsis/genetics*
;
Acute Lung Injury/physiopathology*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
9.miR-207 targets autophagy-associated protein LAMP2 to regulate the mechanism of macrophage-mycobacterium tuberculosis interaction.
Wenya DU ; Yumei DAI ; Linzhi YUE ; Tao MA ; Lixian WU
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):97-104
Objectives miR-207 has been identified as being expressed in natural killer (NK) cell exosomes that play a role in disease progression; however, to date, there are no studies specifically linking miR-207 to tuberculosis (TB). Methods Bioinformatics methods employed for prediction, followed by a dual luciferase reporter assay to determine whether lysosome-associated membrane protein 2 (LAMP2) is targeted by miR-207. The experiments were divided into four groups using the liposome transfection method (OP-LAMP2 group: co-transfected with miR-207 mimics and LAMP2 overexpression plasmid; EP group: co-transfected with mimics NC and null-loaded plasmid; siLAMP2 group: transfected with siLAMP2; and siLAMP2-NC group: transfected with siLAMP2-NC). TB infection was modeled using H37Ra-infected Ana-1 cells. The impact of LAMP2 on intracellular mycobacterial load and clearance of extracellular residual mycobacteria were assessed by tuberculosis colony-forming unit counting. Flow cytometry was used to assess the total apoptosis rate. Real-time fluorescent quantitative PCR was conducted to determine the relative expression of LAMP2, apoptosis genes, pyroptosis genes, and autophagy genes. Western blot analysis was performed to measure the relative expression of LAMP2 proteins, apoptosis proteins, pyroptosis proteins, and autophagy proteins. Results Dual luciferase reporter assay test showed that there was a targeting relationship between LAMP2 and miR-207. The transfection model was successfully constructed under real-time fluorescent quantitative PCR and Western blot statistical analysis, and microscopic observation. The infection model was successfully established under microscopic observation. Colony forming unit counting revealed that the number of colonies in the OP-LAMP2 group was lower than that in the EP group, while the number of colonies in the siLAMP2 group was higher than that in the siLAMP2-NC group. Flow cytometry assay revealed that the total apoptosis in OP-LAMP2 group was lower than that in EP group, and the total apoptosis in siLAMP2 group was higher than that in siLAMP2-NC group. Real-time fluorescence quantitative PCR and Western blot analysis revealed that the relative expression of apoptosis and pyroptosis-related proteins and genes in the control group was lower in the OP-LAMP2 group compared to the EP group, and higher in the siLAMP2 group compared to the siLAMP2-NC group. Real-time fluorescence quantitative PCR detected that the relative expression of autophagy positively regulated genes Microtubule-associated protein 1 light chain 3(LC3)and Beclin1 in the OP-LAMP2 group was higher in the OP-LAMP2 group compared to the EP group, and lower in the siLAMP2 group compared to the siLAMP2-NC group, while the relative expression of negatively regulated autophagy genes followed the opposite trend to that of autophagy positively regulated genes. The relative expression of autophagy-related proteins was consistent with the trend of autophagy genes. Conclusions miR-207 enhances macrophage apoptosis, cellular pyroptosis and inhibits autophagy, promoting survival of Mycobacterium tuberculosis by targeting the autophagy-related protein LAMP2, thus offering a novel therapeutic direction for tuberculosis.
Lysosomal-Associated Membrane Protein 2/metabolism*
;
MicroRNAs/metabolism*
;
Mycobacterium tuberculosis/physiology*
;
Autophagy/genetics*
;
Humans
;
Macrophages/metabolism*
;
Apoptosis/genetics*
;
Tuberculosis/metabolism*
;
Cell Line
;
Pyroptosis/genetics*
10.Mechanism of Qizhi Jiangtang capsule inhibits podocyte pyroptosis to improve kidney injury in diabetes nephropathy by regulating NLRP3/caspase-1/GSDMD pathway.
Shanshan SU ; Zhaoan GUO ; Huan YANG ; Hui LIU ; Jingnan TANG ; Xiaoyu JIANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):204-210
Objective To investigate the impact of Qizhi Jiangtang Capsule (QZJT) on renal damage in diabetic nephropathy (DN) mice via NOD like receptors family pyrin domain containing 3/caspase-1/ Gasdermin D (NLRP3/caspase-1/GSDMD) signaling pathway. Methods Mice were randomly allocated into six experimental groups: a normal control group (NC), a diabetic nephropathy model group (DN), a low-dose QZJT treatment group (L-QZJT), a high-dose QZJT treatment group (H-QZJT), a positive control group administered Shenqi Jiangtang Granules (SQJT), and an ML385 group (treated with an inhibitor of nuclear factor erythroid 2-related factor 2, Nrf2). Upon successful model induction, therapeutic interventions were commenced. Renal function impairment in the mice was evaluated through quantification of fasting blood glucose (FBG), 24-hour urinary albumin (UAlb), serum creatinine (SCr), blood urea nitrogen (BUN), and the kidney-to-body mass ratio (K/B). Renal tissue pathology was evaluated using HE and PAS staining. Serum levels of inflammatory cytokines IL-1β and IL-18 were quantified by ELISA. Levels of podocyte markers and proteins involved in relevant pathways were assessed using Western blot analysis. Results Compared with the NC group, FBG, 24 h UAlb, SCr, and BUN were increased in the DN group, and the K/B mass ratio was also increased. In contrast, compared with the DN group, FBG, 24 h UAlb, SCr, and BUN in both the low-dose (L-QZJT) and high-dose Quanzhou Jintang (H-QZJT) groups were decreased, and the K/B mass ratio was decreased as well. The therapeutic efficacy of H-QZJT was comparable to that of Shenqi Jiangtang Granules. QZJT ameliorated renal histopathological injury in DN mouse, increased the protein levels of Nephrin (a podocyte marker), and decreased the protein levels of NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), pro-caspase-1, and GSDMD-N. After ML385 treatment, renal cells exhibited swelling and morphological changes, the inflammatory infiltrate area was enlarged, the protein levels of NLRP3, ASC, pro-caspase-1, and GSDMD-N were up-regulated, and the levels of IL-1β and IL-18 were increased. Conclusion QZJT may inhibit podocyte pyroptosis by acting on the Nrf2 to regulate the NLRP3/caspase-1/GSDMD pathway, thus improving renal damage in DN mouse.
Animals
;
Diabetic Nephropathies/pathology*
;
Podocytes/pathology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Pyroptosis/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 1/genetics*
;
Signal Transduction/drug effects*
;
Mice
;
Phosphate-Binding Proteins/genetics*
;
Male
;
Intracellular Signaling Peptides and Proteins/metabolism*
;
Mice, Inbred C57BL
;
Kidney/pathology*
;
Gasdermins

Result Analysis
Print
Save
E-mail