1.Effect of danusertib on cell cycle, apoptosis and autophagy of hepatocellular carcinoma HepG2 cells .
Qiaohua ZHU ; Meihua LUO ; Chengyu ZHOU ; Zhixian CHEN ; Wei HUANG ; Jiangyuan HUANG ; Shufeng ZHAO ; Xinfa YU
Journal of Southern Medical University 2018;38(12):1476-1484
OBJECTIVE:
To investigate the effect of danusertib (Danu), an inhibitor of Aurora kinase, on the proliferation, cell cycle, apoptosis, and autophagy of hepatocellular carcinoma HepG2 cells and explore the underlying mechanisms.
METHODS:
MTT assay was used to examine the effect of Danu on the viability of HepG2 cells to determine the IC50 of Danu. The effect of Danu on cell cycle distribution, apoptosis and autophagy were determined using flow cytometry. Western blotting was used to detect the expressions of the proteins related to cell cycle, apoptosis and autophagy. Chloroquine was used to suppress Danuinduced autophagy to test the apoptosis-inducing effect of Danu.
RESULTS:
Danu significantly inhibited the proliferation of HepG2 cells with IC of 39.4 μmol and 14.4 μmol at 24 h and 48 h, respectively. Danu caused cell cycle arrest in G/M phase in HepG2 cells and led to polyploidy accumulation via up-regulating the expressions of p53 and p21 and down-regulating the expressions of cyclin B1 and DC2. Danu also caused apoptosis of HepG2 cells through up-regulating the expressions of Bax, Puma, cleaved caspase-3, cleaved caspase-9, cleaved PARP and cytochrome C and down-regulating the expressions of Bcl-xl and Bcl-2. Danu induced autophagy via activating AMPK signaling and inhibiting PI3K/PTEN/AKT/mTOR axis, and inhibition of Danu-induced autophagy with chloroquine enhanced the pro-apoptotic effect of Danu.
CONCLUSIONS
Danu inhibits cell proliferation and induces cell cycle arrest in G/M phase, apoptosis and cytoprotective autophagy in HepG2 cells.
Apoptosis
;
drug effects
;
Autophagy
;
drug effects
;
Benzamides
;
pharmacology
;
Carcinoma, Hepatocellular
;
pathology
;
Cell Cycle
;
drug effects
;
Cell Division
;
drug effects
;
Cell Proliferation
;
drug effects
;
Hep G2 Cells
;
Humans
;
Liver Neoplasms
;
pathology
;
Neoplasm Proteins
;
metabolism
;
Protein Kinase Inhibitors
;
pharmacology
;
Pyrazoles
;
pharmacology
2.NSC-640358 acts as RXRα ligand to promote TNFα-mediated apoptosis of cancer cell.
Fan CHEN ; Jiebo CHEN ; Jiacheng LIN ; Anton V CHELTSOV ; Lin XU ; Ya CHEN ; Zhiping ZENG ; Liqun CHEN ; Mingfeng HUANG ; Mengjie HU ; Xiaohong YE ; Yuqi ZHOU ; Guanghui WANG ; Ying SU ; Long ZHANG ; Fangfang ZHOU ; Xiao-Kun ZHANG ; Hu ZHOU
Protein & Cell 2015;6(9):654-666
Retinoid X receptor α (RXRα) and its N-terminally truncated version tRXRα play important roles in tumorigenesis, while some RXRα ligands possess potent anti-cancer activities by targeting and modulating the tumorigenic effects of RXRα and tRXRα. Here we describe NSC-640358 (N-6), a thiazolyl-pyrazole derived compound, acts as a selective RXRα ligand to promote TNFα-mediated apoptosis of cancer cell. N-6 binds to RXRα and inhibits the transactivation of RXRα homodimer and RXRα/TR3 heterodimer. Using mutational analysis and computational study, we determine that Arg316 in RXRα, essential for 9-cis-retinoic acid binding and activating RXRα transactivation, is not required for antagonist effects of N-6, whereas Trp305 and Phe313 are crucial for N-6 binding to RXRα by forming extra π-π stacking interactions with N-6, indicating a distinct RXRα binding mode of N-6. N-6 inhibits TR3-stimulated transactivation of Gal4-DBD-RXRα-LBD by binding to the ligand binding pocket of RXRα-LBD, suggesting a strategy to regulate TR3 activity indirectly by using small molecules to target its interacting partner RXRα. For its physiological activities, we show that N-6 strongly inhibits tumor necrosis factor α (TNFα)-induced AKT activation and stimulates TNFα-mediated apoptosis in cancer cells in an RXRα/tRXRα dependent manner. The inhibition of TNFα-induced tRXRα/p85α complex formation by N-6 implies that N-6 targets tRXRα to inhibit TNFα-induced AKT activation and to induce cancer cell apoptosis. Together, our data illustrate a new RXRα ligand with a unique RXRα binding mode and the abilities to regulate TR3 activity indirectly and to induce TNFα-mediated cancer cell apoptosis by targeting RXRα/tRXRα.
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Enzyme Activation
;
drug effects
;
Humans
;
Ligands
;
Molecular Docking Simulation
;
Nuclear Receptor Subfamily 4, Group A, Member 1
;
genetics
;
metabolism
;
Oximes
;
metabolism
;
pharmacology
;
Protein Conformation
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Pyrazoles
;
metabolism
;
pharmacology
;
Retinoid X Receptor alpha
;
chemistry
;
genetics
;
metabolism
;
Thiazoles
;
metabolism
;
pharmacology
;
Transcription, Genetic
;
drug effects
;
Transcriptional Activation
;
drug effects
;
Tumor Necrosis Factor-alpha
;
metabolism
3.Cannabinoid receptor 1 controls nerve growth in ectopic cyst in a rat endometriosis model.
Qianqian ZHAO ; Xizi LIANG ; Hongxiu HAN
Chinese Journal of Pathology 2014;43(12):827-830
OBJECTIVETo investigate whether cannabinoid receptor 1 (CB1R) is involved in nerve growth in endometriosis-associated ectopic cyst.
METHODSThe effect of CB1R agonist and antagonist on the expression of pan-neuronal marker protein gene product (PGP) 9.5 in ectopic cyst was examined by immunofluorescence and Western blot in endometriosis model of 18 rats.
RESULTSImmunofluorescence revealed that PGP 9.5 was expressed in the nerve fibers and was mainly distributed in the cyst hilum. Western blot revealed that the protein density of either PGP 9.5 (2 week: 0.38 ± 0.05; 4 week: 0.63 ± 0.03; 8 week: 0.80 ± 0.07, P < 0.01) or CB1R (2 week: 0.48 ± 0.04; 4 week: 0.68 ± 0.01; 8 week: 0.80 ± 0.03, P < 0.01) in the ectopic cyst increased with cyst size. In addition, compared to control group (0.75 ± 0.01), PGP 9.5 expression in the ectopic cyst was promoted by CB1R agonist ACPA (0.81 ± 0.01, P < 0.05), and inhibited by CB1R antagonist AM251 (0.67 ± 0.03, P < 0.01).
CONCLUSIONSCB1R was involved in the nerve growth of ectopic cyst associated with endometriosis.
Animals ; Blotting, Western ; Cysts ; metabolism ; Disease Models, Animal ; Endometriosis ; metabolism ; Female ; Peripheral Nerves ; growth & development ; metabolism ; Piperidines ; pharmacology ; Pyrazoles ; pharmacology ; Rats ; Receptor, Cannabinoid, CB1 ; antagonists & inhibitors ; physiology ; Ubiquitin Thiolesterase ; metabolism
4.Establishment and application of human CHO/NTR1 system.
Guo ZHANG ; Tao SUN ; Hui-Juan LIU ; Guo-Jun NIU ; Feng XU
Acta Pharmaceutica Sinica 2014;49(9):1273-1278
Neurotensin receptor-1 (NTR1), which can stimulate the intracellular cascade signal pathway, belongs to the large superfamily of G-protein coupled receptors. NTR1 is related to the occurrence and development of several kinds of diseases. In order to screen the inhibitors for the cancers associated with NTR1 protein, we established a CHO (Chinese hamster ovary) cell line in which human neurotensin receptor-1 was highly expressed. The method is to construct the recombinant plasmid which was lysed with the hNTR1 gene and transfect it into CHO cells. After selected with G418, the cell line was evaluated by Western blotting analysis and calcium flux assays. Through the calcium flux assays on FlexStation 3, we got the EC50 value of neurotensin peptide which is the natural NTR1 agonist, and the IC 50 value of SR48692 which is the known NTR1 antagonist. The established human CHO/NTR1 cell line can be used to study the profile of NTR1 biological activity and further screen of NTR1 antagonists and agonists.
Animals
;
CHO Cells
;
Calcium Signaling
;
Cricetinae
;
Cricetulus
;
Humans
;
Pyrazoles
;
pharmacology
;
Quinolines
;
pharmacology
;
Receptors, Neurotensin
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Transfection
5.Transient folate deprivation in combination with small-molecule compounds facilitates the generation of somatic cell-derived pluripotent stem cells in mice.
Wen-tao HU ; Qiu-yue YAN ; Yu FANG ; Zhan-dong QIU ; Su-ming ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(2):151-156
Induced pluripotent stem cells (iPSCs) can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for the extra-embryonic tissues. This iPSC technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large numbers of disease-specific cells for biomedical research. However, the low efficiency of reprogramming and genomic integration of oncogenes and viral vectors limit the potential application of iPSCs. Chemical-induced reprogramming offers a novel approach to generating iPSCs. In this study, a new combination of small-molecule compounds (SMs) (sodium butyrate, A-83-01, CHIR99021, Y-27632) under conditions of transient folate deprivation was used to generate iPSC. It was found that transient folate deprivation combined with SMs was sufficient to permit reprogramming from mouse embryonic fibroblasts (MEFs) in the presence of transcription factors, Oct4 and Klf4, within 25 days, replacing Sox2 and c-Myc, and accelerated the generation of mouse iPSCs. The resulting cell lines resembled mouse embryonic stem (ES) cells with respect to proliferation rate, morphology, pluripotency-associated markers and gene expressions. Deprivation of folic acid, combined with treating MEFs with SMs, can improve the inducing efficiency of iPSCs and reduce their carcinogenicity and the use of exogenous reprogramming factors.
Amides
;
pharmacology
;
Animals
;
Butyric Acid
;
pharmacology
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Cell Proliferation
;
drug effects
;
Extraembryonic Membranes
;
cytology
;
drug effects
;
Folic Acid
;
pharmacology
;
Induced Pluripotent Stem Cells
;
cytology
;
drug effects
;
Kruppel-Like Transcription Factors
;
metabolism
;
Mice
;
Octamer Transcription Factor-3
;
metabolism
;
Proto-Oncogene Proteins c-myc
;
metabolism
;
Pyrazoles
;
pharmacology
;
Pyridines
;
pharmacology
;
Pyrimidines
;
pharmacology
;
SOXB1 Transcription Factors
;
metabolism
;
Thiocarbamates
;
pharmacology
;
Thiosemicarbazones
6.Celecoxib antagonizes the cytotoxic effect of carboplatin in human esophageal cancer cells.
Lili SHI ; Desheng ZHONG ; Chunping GU ; Le YU
Journal of Southern Medical University 2014;34(6):792-797
OBJECTIVETo explore the antagonizing effect of celecoxib against the cytotoxicity of carboplatin in human esophageal cancer cells.
METHODSThe cell viability of cisplatin-resistant cell line EC109/CDDP and its parental cell line EC109 exposed to carboplatin alone or carboplatin plus celecoxib was determined by MTT assay. The expression of CTR1, caspase-3 activation and PARP cleavage in the exposed cells were examined by Western blotting. Caspase-3 activity and cell apoptosis after the exposure were detected with Caspase-3/7 assay and flow cytometry, respectively. The effect of celecoxib on carboplatin accumulation in the cells was measured using inductively coupled plasma mass spectrometry (ICP-MS).
RESULTSCelecoxib treatment significantly increased the IC50 of carboplatin, suppressed carboplatin-induced caspase-3 and PARP cleavage and caspase-3 activity in EC109 and EC109/CDDP cells. Celecoxib also inhibited carboplatin-induced apoptosis and suppressed intracellular carboplatin accumulation in both cell lines. A combined exposure to celecoxib and carboplatin did not cause significant changes in the protein expression of CTR1.
CONCLUSIONCelecoxib antagonizes the cytotoxic effect of carboplatin and inhibits carboplatin-induced apoptosis in human esophageal cancer cells by reducing intracellular carboplatin accumulation.
Apoptosis ; Blotting, Western ; Carboplatin ; antagonists & inhibitors ; Caspase 3 ; metabolism ; Celecoxib ; Cell Line, Tumor ; drug effects ; Cell Survival ; Drug Interactions ; Esophageal Neoplasms ; metabolism ; pathology ; Humans ; Pyrazoles ; pharmacology ; Sulfonamides ; pharmacology
7.Effect of COX-2 inhibitor celecoxib on proliferation, apoptosis of HL-60 cells and its mechanism.
Xia XIE ; Jie LI ; Rui-Cang WANG ; Rui-Li GENG ; Su-Yun WANG ; Chao WANG ; Xiao-Yun ZHAO ; Hong-Ling HAO
Journal of Experimental Hematology 2014;22(3):707-711
This study was aimed to investigate the effect of COX-2 inhibitor celecoxib on proliferation, apoptosis of human acute myeloid leukemia cell line HL-60 and its mechanism. HL-60 cells were cultured with different concentrations of celecoxib for 24 h. Cell proliferation was analyzed by CCK-8 assay, cell apoptosis and cell cycle distribution were detected by flow cytometry. Cyclin D1, cyclin E1 and COX-2 mRNA expressions were determined by RT-PCR. The results showed that after the HL-60 cells were treated with different concentrations of celecoxib for 24 h, the cell growth was significantly inhibited in a dose-dependent manner(r = 0.955), IC50 was 63.037 µmol/L of celecoxib. Celecoxib could effectively induce apoptosis in HL-60 cells also in dose-dependent manner(r = 0.988), blocked the HL-60 cells in the G0/G1 phase. The expression of cyclin D1, cyclin E1 and COX-2 mRNA were downregulated. It is concluded that celecoxib can inhibit the proliferation of HL-60 cells in dose-dependent manner, celecoxib causes cell G0/G1 arrest and induces cell apoptosis possibly through down-regulation of the cyclin D1 and cyclin E1 expression, and down-regulation of COX-2 expression respectively.
Apoptosis
;
drug effects
;
Celecoxib
;
Cell Proliferation
;
drug effects
;
Cyclin D1
;
metabolism
;
Cyclin E
;
metabolism
;
Cyclooxygenase 2
;
metabolism
;
Cyclooxygenase 2 Inhibitors
;
pharmacology
;
Gene Expression Regulation, Leukemic
;
HL-60 Cells
;
Humans
;
Oncogene Proteins
;
metabolism
;
Pyrazoles
;
pharmacology
;
Sulfonamides
;
pharmacology
8.Research progress of role of cannabinoid receptor in fibrosis.
Shanshan LI ; Linlin WANG ; Min LIU ; Yanling GAO ; Zhiling TIAN ; Shukun JIANG ; Miao ZHANG ; Dawei GUAN
Chinese Journal of Pathology 2014;43(2):136-138
Animals
;
Cannabinoid Receptor Antagonists
;
therapeutic use
;
Cannabinoids
;
pharmacology
;
Fibrosis
;
metabolism
;
Humans
;
Liver Cirrhosis
;
etiology
;
metabolism
;
therapy
;
Piperidines
;
therapeutic use
;
Pyrazoles
;
therapeutic use
;
Receptor, Cannabinoid, CB1
;
metabolism
;
Receptor, Cannabinoid, CB2
;
metabolism
;
Receptors, Cannabinoid
;
metabolism
;
Scleroderma, Diffuse
;
metabolism
;
Signal Transduction
;
drug effects
;
Skin
;
metabolism
;
Smad Proteins
;
metabolism
;
Transforming Growth Factor beta1
;
metabolism
9.Effect of carnosol against proliferative activity of breast cancer cells and its estrogen receptor subtype's mediation and regulation mechanisms.
Pi-Wen ZHAO ; David Yue-Wei LEE ; Zhong-Ze MA ; Yan-Ling SUN ; Shi-Ying TAO ; Jin-Feng ZANG ; Jian-Zhao NIU
China Journal of Chinese Materia Medica 2014;39(17):3344-3348
Carnosol has been proved to have anti-breast cancer effect in previous research. But its ER subtype's specific regulation and mediation mechanisms remain unclear. The aim of this study is to observe the effect of carnosol on cell proliferation and its estrogen receptor α and β's specific regulation and mediation mechanisms with ER positive breast cancer T47D cell. With estrogen receptor α and β antagonists MPP and PHTPP as tools, the MTT cell proliferation assay was performed to observe the effect of carnosol on T47D cell proliferation. The changes in the T47D cell proliferation cycle were detected by flow cytometry. The effect of carnosol on ERα and ERβ expressions of T47D cells was measured by Western blot. The findings showed that 1 x 10(-5)-1 x 10(-7) mol x L(-1) carnosol could significantly inhibit the T47D cell proliferation, which could be enhanced by MPP or weakened by PHTPP. Meanwhile, 1 x 10(-5) mol x L(-1) or 1 x 10(-6) mol x L(-1) carnosol could significantly increase ERα and ERβ expressions of T47D cells, and remarkably increase ERα/ERβ ratio. The results showed that carnosol showed the inhibitory effect on the proliferation of ER positive breast cancer cells through target cell ER, especially ERβ pathway. In the meantime, carnosol could regulate expressions and proportions of target cell ER subtype ERα and ERβ.
Blotting, Western
;
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Cycle
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Diterpenes, Abietane
;
chemistry
;
pharmacology
;
Dose-Response Relationship, Drug
;
Estrogen Receptor Modulators
;
pharmacology
;
Estrogen Receptor alpha
;
antagonists & inhibitors
;
metabolism
;
Estrogen Receptor beta
;
antagonists & inhibitors
;
metabolism
;
Female
;
Flow Cytometry
;
Humans
;
Molecular Structure
;
Pyrazoles
;
pharmacology
;
Pyrimidines
;
pharmacology
10.Inhibitory effects of blockage of intermediate conductance Ca(2+)-activated K (+) channels on proliferation of hepatocellular carcinoma cells.
Xiao-wei YANG ; Jin-wen LIU ; Ru-chao ZHANG ; Qian YIN ; Wen-zhuang SHEN ; Ji-lin YI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(1):86-89
The roles of intermediate conductance Ca(2+)-activated K(+) channel (IKCa1) in the pathogenesis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect the expression of IKCa1 protein in 50 HCC and 20 para-carcinoma tissue samples. Real-time PCR was used to detect the transcription level of IKCa1 mRNA in 13 HCC and 11 para-carcinoma tissue samples. The MTT assay was used to measure the function of IKCa1 in human HCC cell line HepG2 in vitro. TRAM-34, a specific blocker of IKCa1, was used to intervene with the function of IKCa1. As compared with para-carcinoma tissue, an over-expression of IKCa1 protein was detected in HCC tissue samples (P<0.05). The mRNA expression level of IKCa1 in HCC tissues was 2.17 times higher than that in para-carcinoma tissues. The proliferation of HepG2 cells was suppressed by TRAM-34 (0.5, 1.0, 2.0 and 4.0 μmol/L) in vitro (P<0.05). Our results suggested that IKCa1 may play a role in the proliferation of human HCC, and IKCa1 blockers may represent a potential therapeutic strategy for HCC.
Calcium Channel Blockers
;
pharmacology
;
Carcinoma, Hepatocellular
;
pathology
;
physiopathology
;
Cell Proliferation
;
drug effects
;
Hep G2 Cells
;
Humans
;
Intermediate-Conductance Calcium-Activated Potassium Channels
;
antagonists & inhibitors
;
metabolism
;
Ion Channel Gating
;
drug effects
;
Liver Neoplasms
;
pathology
;
physiopathology
;
Potassium
;
metabolism
;
Pyrazoles
;
pharmacology
;
Tumor Cells, Cultured

Result Analysis
Print
Save
E-mail