1.Effects of zhongfeng cutong moxibustion on motor function and corticospinal tract in the patients with motor dysfunction during the recovery period of cerebral infarction.
Zi-Long ZHU ; Tian-Yi SHEN ; Zheng SUN ; Hao LI ; Hua SHAN ; Lin-Li CAO ; Jian-Bin ZHANG
Chinese Acupuncture & Moxibustion 2023;43(12):1358-1362
OBJECTIVES:
To observe the effects of zhongfeng cutong moxibustion (moxibustion therapy for unblocking and treating stroke) on the motor function and the structure of corticospinal tract (CST) in the patients with motor dysfunction during the recovery period of cerebral infarction, and to explore the central mechanism of this moxibustion therapy for improving the motor function.
METHODS:
Fifty patients with motor dysfunction during the recovery period of cerebral infarction were randomly divided into an observation group (25 cases, 1 case dropped out) and a control group (25 cases, 1 case dropped out). The patients in both groups underwent the conventional basic treatment. In the control group, acupuncture was applied to Baihui (GV 20) and Shuigou (GV 26), as well as Chize (LU 5), Neiguan (PC 6), Weizhong (BL 40) and Sanyinjiao (SP 6) etc. on the affected side. Besides the intervention of the control group, in the observation group, zhongfeng cutong moxibustion therapy was combined at Baihui (GV 20), Shenque (CV 8) and bilateral Zusanli (ST 36). Both acupuncture and moxibustion therapies were delivered once daily, 5 times a week, for 2 weeks. The scores of Fugl-Meyer assessment scale (FMA) and National Institutes of Health stroke scale (NIHSS) were compared between the two groups before and after treatment. The diffusion tensor imaging technique was used to observe the fractional anisotropy (FA) of CST at the bilateral whole segment, the cerebral cortex, the posterior limb of the internal capsule and the cerebral peduncle before and after treatment in the two groups.
RESULTS:
The scores of the upper and the lower limbs of FMA, as well as the total FMA score swere increased after treatment when compared with those before treatment in the two groups (P<0.05), the upper limb FMA score and the total FMA score in the observation group were higher than those in the control group (P<0.05), and NIHSS scores of the two groups were dropped compared with those before treatment (P<0.01). FA of CST at the bilateral sides of the posterior limb of the internal capsule and the whole segment on the focal side was improved in comparison with that before treatment in the observation group (P<0.05), and FA of CST at the healthy side of the whole segment was higher than that before treatment in the control group (P<0.05).
CONCLUSIONS
Zhongfeng cutong moxibustion improves motor function and reduces neurological deficits in the patients with motor dysfunction during the recovery period of cerebral infarction, which may be related to enhancing the remodeling of white matter fiber bundles in the corticospinal tract on the focal side of the whole segment and the bilateral posterior limb of the internal capsule.
Humans
;
Moxibustion
;
Pyramidal Tracts
;
Diffusion Tensor Imaging
;
Acupuncture Therapy
;
Cerebral Infarction/therapy*
;
Stroke/therapy*
;
Acupuncture Points
;
Treatment Outcome
2.Ten-Year Follow-Up of Transcranial Magnetic Stimulation Study in a Patient With Congenital Mirror Movements: A Case Report
Eu Deum KIM ; Gi Wook KIM ; Yu Hui WON ; Myoung Hwan KO ; Jeong Hwan SEO ; Sung Hee PARK
Annals of Rehabilitation Medicine 2019;43(4):524-529
Most studies concerning congenital mirror movements (CMMs) have been focused on the motor organization in the distal hand muscles exclusively. To the best of our knowledge, there is no data on motor organization pattern of lower extremities, and a scarcity of data on the significance of forearm and arm muscles in CMMs. Here, we describe the case of a 19-year-old boy presenting mirror movements. In these terms, a 10-year transcranial magnetic stimulation study demonstrated that the motor organization pattern of the arm muscles was different from that of distal hand and forearm muscles even in the same upper extremity, and that the lower extremities showed the same pathways as healthy children. Moreover, in this case, an ipsilateral motor evoked potentials (MEPs) for distal hand muscles increased in amplitude with age, even though the intensity of mirror movements decreased. In the arm muscles, however, it was concluded that the contralateral MEPs increased in amplitude with age.
Arm
;
Child
;
Evoked Potentials
;
Evoked Potentials, Motor
;
Follow-Up Studies
;
Forearm
;
Hand
;
Humans
;
Lower Extremity
;
Male
;
Muscles
;
Pyramidal Tracts
;
Synkinesis
;
Transcranial Magnetic Stimulation
;
Upper Extremity
;
Young Adult
3.Delayed Extensive White Matter Injury Caused by a Subdural Hemorrhage and Role of Corticospinal Tract Integrity
Kyoung Bo LEE ; Sang Cheol YOON ; Joon Sung KIM ; Bo Young HONG ; Jung Geun PARK ; Won Jin SUNG ; Hye Jung PARK ; Seong Hoon LIM
Brain & Neurorehabilitation 2019;12(2):e15-
A subdural hemorrhage (SDH) is a common disorder with usually good prognosis. Most SDHs resolve with or without with minimal sequelae. We present a case report of a patient with SDH, who had delayed extensive white matter injury with disruptions of corticospinal tracts (CSTs) by diffusion tensor imaging (DTI) and showed abysmal prognosis, despite long-term rehabilitation. A 62-year-old man with an SDH underwent burr hole trephination for hematoma removal. Within 7 days, the hemorrhage diminished. At 12 weeks after the onset, the patient's weakness did not improve, and a follow-up magnetic resonance imaging revealed extensive leukomalacia, especially in the white matter. The DTI for CST revealed severe injury of CST integrity. He did not re-gain muscle strength and functional independence, despite 3 months of inpatient rehabilitation. This case describes SDH with delayed extensive white matter injury and exceptional poor prognosis and urges caution in that the SDH may induce very variable functional recovery. Besides, DTI for CST would be useful in predicting the long-term functional prognosis in extensive white matter injury.
Diffusion Tensor Imaging
;
Follow-Up Studies
;
Hematoma
;
Hematoma, Subdural
;
Hemorrhage
;
Humans
;
Inpatients
;
Magnetic Resonance Imaging
;
Middle Aged
;
Muscle Strength
;
Prognosis
;
Pyramidal Tracts
;
Rehabilitation
;
Trephining
;
White Matter
4.Motor Evoked Potentials in the Upper Extremities of Children with Spastic Hemiplegic Cerebral Palsy
Da Sol KIM ; Eu Deum KIM ; Gi Wook KIM ; Yu Hui WON ; Myoung Hwan KO ; Jeon Hwan SEO ; Sung Hee PARK
Brain & Neurorehabilitation 2019;12(2):e10-
The aim of this study was to evaluate and compare the reorganization of corticospinal pathways innervating upper extremity muscles in patients with spastic hemiplegic cerebral palsy (CP). Thirty-2 patients (17 male, 15 female) with spastic hemiplegic CP were enrolled. The average age (mean ± standard deviation) was 7.5 ± 4.6 (range: 2–17) years. Transcranial magnetic stimulation (TMS) was applied to the unaffected and affected motor cortices in turn, and bilateral electromyographic recordings were made from the first dorsal interossei (FDI), the biceps brachii (BB), and the deltoid muscles during rest. The onset latency, central motor conduction time, and peak-to-peak amplitude of motor evoked potentials (MEPs) were measured for each muscle bilaterally. Whilst TMS of both affected and unaffected hemispheres elicited contralateral MEPs in all muscles, the number of MEPs evoked from the affected hemisphere was less than from the unaffected hemisphere for FDI and BB. TMS responses to stimulation of the affected side showed prolonged latency and reduced amplitude. The amplitudes of MEPs increased with age whereas the latencies were relatively constant. These results suggest that the corticospinal pathways to the proximal and distal muscles of the upper extremity undergo sequential maturation and reorganization patterns.
Cerebral Palsy
;
Child
;
Deltoid Muscle
;
Evoked Potentials, Motor
;
Humans
;
Male
;
Muscle Spasticity
;
Muscles
;
Pyramidal Tracts
;
Transcranial Magnetic Stimulation
;
Upper Extremity
5.Comprehensive therapeutics targeting the corticospinal tract following spinal cord injury.
An-Kai XU ; Zhe GONG ; Yu-Zhe HE ; Kai-Shun XIA ; Hui-Min TAO
Journal of Zhejiang University. Science. B 2019;20(3):205-218
Spinal cord injury (SCI), which is much in the public eye, is still a refractory disease compromising the well-being of both patients and society. In spite of there being many methods dealing with the lesion, there is still a deficiency in comprehensive strategies covering all facets of this damage. Further, we should also mention the structure called the corticospinal tract (CST) which plays a crucial role in the motor responses of organisms, and it will be the focal point of our attention. In this review, we discuss a variety of strategies targeting different dimensions following SCI and some treatments that are especially efficacious to the CST are emphasized. Over recent decades, researchers have developed many effective tactics involving five approaches: (1) tackle more extensive regions; (2) provide a regenerative microenvironment; (3) provide a glial microenvironment; (4) transplantation; and (5) other auxiliary methods, for instance, rehabilitation training and electrical stimulation. We review the basic knowledge on this disease and correlative treatments. In addition, some well-formulated perspectives and hypotheses have been delineated. We emphasize that such a multifaceted problem needs combinatorial approaches, and we analyze some discrepancies in past studies. Finally, for the future, we present numerous brand-new latent tactics which have great promise for curbing SCI.
Animals
;
Astrocytes/cytology*
;
Axons/physiology*
;
Cell Transplantation
;
Disease Models, Animal
;
Electric Stimulation
;
Humans
;
Microglia/cytology*
;
Motor Neurons/cytology*
;
Nerve Regeneration
;
Neuroglia/cytology*
;
Neuronal Plasticity
;
Neurons/cytology*
;
Oligodendroglia/cytology*
;
Pyramidal Tracts/pathology*
;
Recovery of Function
;
Regenerative Medicine/methods*
;
Spinal Cord Injuries/therapy*
6.Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay
Jeong Bin BONG ; Seung Woo KIM ; Seung Tae LEE ; Jong Rak CHOI ; Ha Young SHIN
Journal of the Korean Neurological Association 2019;37(1):69-72
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), which is caused by mutations in SACS gene, is a very rare neurodegenerative disorder characterized by the clinical triad of early onset cerebellar ataxia, pyramidal tract features, and sensorimotor polyneuropathy. Herein, we report a 35-year-old Korean male who presented with gait disturbance and lower extremity weakness. Neuroimaging and ophthalmologic evaluation revealed features consistent with ARSACS. Mutation in SACS gene was demonstrated in clinical exome sequence analysis and the patient was finally diagnosed as ARSACS.
Adult
;
Ataxia
;
Cerebellar Ataxia
;
Exome
;
Gait
;
Humans
;
Lower Extremity
;
Male
;
Muscle Spasticity
;
Neurodegenerative Diseases
;
Neuroimaging
;
Polyneuropathies
;
Pyramidal Tracts
;
Sequence Analysis
;
Spinocerebellar Degenerations
7.Opalski Syndrome Presenting as Sensorimotor Deficits Ipsilateral to Cerebral Infarction
Ha Kyeu AN ; Jong Wook SHIN ; Soo Young KIM ; Hee Jin CHANG ; Hye Seon JEONG
Journal of the Korean Neurological Association 2019;37(2):186-190
Opalski syndrome is a rare lateral medullary infarction variant presenting with ipsilateral motor deficits known to be caused by involvement of the post-decussating pyramidal tract. Here, we report two rare cases of Opalski syndrome presenting as ipsilateral sensorimotor deficits in cerebral infarction.
Cerebral Infarction
;
Infarction
;
Lateral Medullary Syndrome
;
Pyramidal Tracts
8.Mini-Review of Studies Reporting the Repeatability and Reproducibility of Diffusion Tensor Imaging
Jeong Pyo SEO ; Young Hyeon KWON ; Sung Ho JANG
Investigative Magnetic Resonance Imaging 2019;23(1):26-33
PURPOSE: Diffusion tensor imaging (DTI) data must be analyzed by an analyzer after data processing. Hence, the analyzed data of DTI might depend on the analyzer, making it a major limitation. This paper reviewed previous DTI studies reporting the repeatability and reproducibility of data from the corticospinal tract (CST), one of the most actively researched neural tracts on this topic. MATERIALS AND METHODS: Relevant studies published between January 1990 and December 2018 were identified by searching PubMed, Google Scholar, and MEDLINE electronic databases using the following keywords: DTI, diffusion tensor tractography, reliability, repeatability, reproducibility, and CST. As a result, 15 studies were selected. RESULTS: Measurements of the CSTs using region of interest methods on 2-dimensional DTI images generally showed excellent repeatability and reproducibility of more than 0.8 but high variability (0.29 to 1.00) between studies. In contrast, measurements of the CST using the 3-dimensional DTT method not only revealed excellent repeatability and reproducibility of more than 0.9 but also low variability (repeatability, 0.88 to 1.00; reproducibility, 0.82 to 0.99) between studies. CONCLUSION: Both 2-dimensional DTI and 3-dimensional DTT methods appeared to be reliable for measuring the CST but the 3-dimensional DTT method appeared to be more reliable.
Diffusion Tensor Imaging
;
Diffusion
;
Methods
;
Pyramidal Tracts
9.Glial Cell Line-derived Neurotrophic Factor-overexpressing Human Neural Stem/Progenitor Cells Enhance Therapeutic Efficiency in Rat with Traumatic Spinal Cord Injury
Kyujin HWANG ; Kwangsoo JUNG ; Il Sun KIM ; Miri KIM ; Jungho HAN ; Joohee LIM ; Jeong Eun SHIN ; Jae Hyung JANG ; Kook In PARK
Experimental Neurobiology 2019;28(6):679-696
Spinal cord injury (SCI) causes axonal damage and demyelination, neural cell death, and comprehensive tissue loss, resulting in devastating neurological dysfunction. Neural stem/progenitor cell (NSPCs) transplantation provides therapeutic benefits for neural repair in SCI, and glial cell line-derived neurotrophic factor (GDNF) has been uncovered to have capability of stimulating axonal regeneration and remyelination after SCI. In this study, to evaluate whether GDNF would augment therapeutic effects of NSPCs for SCI, GDNF-encoding or mock adenoviral vector-transduced human NSPCs (GDNF-or Mock-hNSPCs) were transplanted into the injured thoracic spinal cords of rats at 7 days after SCI. Grafted GDNF-hNSPCs showed robust engraftment, long-term survival, an extensive distribution, and increased differentiation into neurons and oligodendroglial cells. Compared with Mock-hNSPC- and vehicle-injected groups, transplantation of GDNF-hNSPCs significantly reduced lesion volume and glial scar formation, promoted neurite outgrowth, axonal regeneration and myelination, increased Schwann cell migration that contributed to the myelin repair, and improved locomotor recovery. In addition, tract tracing demonstrated that transplantation of GDNF-hNSPCs reduced significantly axonal dieback of the dorsal corticospinal tract (dCST), and increased the levels of dCST collaterals, propriospinal neurons (PSNs), and contacts between dCST collaterals and PSNs in the cervical enlargement over that of the controls. Finally grafted GDNF-hNSPCs substantially reversed the increased expression of voltage-gated sodium channels and neuropeptide Y, and elevated expression of GABA in the injured spinal cord, which are involved in the attenuation of neuropathic pain after SCI. These findings suggest that implantation of GDNF-hNSPCs enhances therapeutic efficiency of hNSPCs-based cell therapy for SCI.
Animals
;
Axons
;
Cell Death
;
Cell Movement
;
Cell- and Tissue-Based Therapy
;
Cicatrix
;
Demyelinating Diseases
;
gamma-Aminobutyric Acid
;
Glial Cell Line-Derived Neurotrophic Factor
;
Humans
;
Hyperalgesia
;
Myelin Sheath
;
Neuralgia
;
Neurites
;
Neuroglia
;
Neurons
;
Neuropeptide Y
;
Paraplegia
;
Pyramidal Tracts
;
Rats
;
Regeneration
;
Spinal Cord Injuries
;
Spinal Cord
;
Therapeutic Uses
;
Transplants
;
Voltage-Gated Sodium Channels
10.Complex Regional Pain Syndrome of Non-hemiplegic Upper Limb in a Stroke Patient: A Case Report
Ahry LEE ; Youjin JUNG ; Hee Kyu KWON ; Sung Bom PYUN
Annals of Rehabilitation Medicine 2018;42(1):175-179
Complex regional pain syndrome (CRPS) type I in stroke patients is usually known to affect the hemiplegic upper limb. We report a case of CRPS presented in an ipsilesional arm of a 72-year-old female patient after an ischemic stroke at the left middle cerebral artery territory. Clinical signs such as painful range of motion and hyperalgesia of her left upper extremity, swollen left hand, and dystonic posture were suggestive of CRPS. A three-phase bone scintigraphy showed increased uptake in all phases in the ipsilesional arm. Diffusion tensor tractography showed significantly decreased fiber numbers of the corticospinal tract and the spinothalamic tract in both unaffected and affected hemispheres. Pain and range of motion of the left arm of the patient improved after oral steroids with a starting dose of 50 mg/day.
Aged
;
Arm
;
Complex Regional Pain Syndromes
;
Diffusion
;
Diffusion Tensor Imaging
;
Female
;
Hand
;
Humans
;
Hyperalgesia
;
Middle Cerebral Artery
;
Posture
;
Pyramidal Tracts
;
Radionuclide Imaging
;
Range of Motion, Articular
;
Spinothalamic Tracts
;
Steroids
;
Stroke
;
Upper Extremity

Result Analysis
Print
Save
E-mail