1.Mechanism of active ingredients in Periploca forrestii compound against rheumatoid arthritis based on integrative metabolomics and network pharmacology.
Qin ZHANG ; Hong ZHANG ; Chun-Mei YANG ; Bo WANG ; Chen-Yang LI ; Qi LI
China Journal of Chinese Materia Medica 2023;48(2):507-516
		                        		
		                        			
		                        			In this study, an ultra-performance liquid chromatography-quadrupole time-of-flight high resolution mass spectrometer(UPLC-Q-TOF-HRMS) was used to investigate the effects of the active ingredients in Periploca forrestii compound on spleen metabolism in rats with collagen-induced arthritis(CIA), and its potential anti-inflammatory mechanism was analyzed by network pharmacology. After the model of CIA was successfully established, the spleen tissues of rats were taken 28 days after administration. UPLC-Q-TOF-HRMS chromatograms were collected and analyzed by principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and MetPA. The results showed that as compared with the blank control group, 22 biomarkers in the spleen tissues such as inosine, citicoline, hypoxanthine, and taurine in the model group increased, while 9 biomarkers such as CDP-ethanolamine and phosphorylcholine decreased. As compared with the model group, 21 biomarkers such as inosine, citicoline, CDP-ethanolamine, and phosphorylcholine were reregulated by the active ingredients in P. forrestii. Seventeen metabolic pathways were significantly enriched, including purine metabolism, taurine and hypotaurine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism. Network pharmacology analysis found that purine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism played important roles in the pathological process of rheumatoid arthritis. This study suggests that active ingredients in P. forrestii compound can delay the occurrence and development of inflammatory reaction by improving the spleen metabolic disorder of rats with CIA. The P. forrestii compound has multi-target and multi-pathway anti-inflammatory mechanism. This study is expected to provide a new explanation for the mechanism of active ingredients in P. forrestii compound against rheumatoid arthritis.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Periploca
		                        			;
		                        		
		                        			Cysteine
		                        			;
		                        		
		                        			Cytidine Diphosphate Choline
		                        			;
		                        		
		                        			Network Pharmacology
		                        			;
		                        		
		                        			Phosphorylcholine
		                        			;
		                        		
		                        			Metabolomics
		                        			;
		                        		
		                        			Arthritis, Rheumatoid/drug therapy*
		                        			;
		                        		
		                        			Biomarkers
		                        			;
		                        		
		                        			Glycerophospholipids
		                        			;
		                        		
		                        			Methionine
		                        			;
		                        		
		                        			Purines
		                        			;
		                        		
		                        			Chromatography, High Pressure Liquid
		                        			
		                        		
		                        	
2.Inhibitory effect of PI3Kδ inhibitor idelalisib on proliferation of human myeloid leukemia cells and the reversal effect on drug resistance to adriamycin.
Kunlun LI ; Pingyong YI ; Hanjia LUO ; Jiwei LI ; Liu MENG ; Min TANG ; Weisi ZENG ; Shuo YANG ; Wei WANG
Journal of Central South University(Medical Sciences) 2020;45(12):1389-1397
		                        		
		                        			OBJECTIVES:
		                        			To investigate the effect of adriamycin (ADM), idelalisib or ADM and their combination on cell proliferation and intracellular concentration of ADM, and to explore the reversal effect of idelalisib on drug resistance to ADM.
		                        		
		                        			METHODS:
		                        			The K562 and K562/ADM cells were respectively treated with ADM and idelalisib at different concentrations. The 50% inhibitory concentration (IC
		                        		
		                        			RESULTS:
		                        			The cell survival rates were significantly decreased in a dose-dependent manner when the cells were treated with different doses of ADM (0.001-10.000 mg/L ). The IC
		                        		
		                        			CONCLUSIONS
		                        			Idelalisib exerts effect on inhibition of the proliferation in myeloid leukemia K562 and K562/ADM cells, which may partially reverse the drug resistance of K562/ADM cells to ADM. The mechanisms for the effect of idelalisib may be related to increasing the accumulation of ADM and inducing the cell apoptosis in the K562 and K562/ADM cells.
		                        		
		                        		
		                        		
		                        			ATP Binding Cassette Transporter, Subfamily B, Member 1
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Doxorubicin/pharmacology*
		                        			;
		                        		
		                        			Drug Resistance, Multiple
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			K562 Cells
		                        			;
		                        		
		                        			Leukemia, Myeloid
		                        			;
		                        		
		                        			Purines
		                        			;
		                        		
		                        			Quinazolinones
		                        			
		                        		
		                        	
3.Effects of six compounds with different chemical structures on melanogenesis.
Rakotomalala Manda HERINIAINA ; Jing DONG ; Praveen Kumar KALAVAGUNTA ; Hua-Li WU ; Dong-Sheng YAN ; Jing SHANG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(10):766-773
		                        		
		                        			
		                        			Several chemical compounds can restore pigmentation in vitiligo through mechanisms that vary according to disease etiology. In the present study, we investigated the melanogenic activity of six structurally distinct compounds, namely, scopoletin, kaempferol, chrysin, vitamin D, piperine, and 6-benzylaminopurine. We determined their effectiveness, toxicity, and mechanism of action for stimulating pigmentation in B16F10 melanoma cells and in a zebrafish model. The melanogenic activity of 6-benzylaminopurine, the compound identified as the most potent, was further verified by measuring green fluorescent protein concentration in tyrp1 a: eGFP (tyrosinase-related protein 1) zebrafish and mitfa: eGFP (microphthalmia associated transcription factor) zebrafish and antioxidative activity. All the tested compounds were found to enhance melanogenesis responses both in vivo and in vitro at their respective optimal concentration by increasing melanin content and expression of TYR and MITF. 6-Benzyamino-purine showed the strongest re-pigmentation action at a concentration of 20 μmol·Lin vivo and 100 μmol·Lin vitro, and up-regulated the strong fluorescence expression of green fluorescent protein in tyrp1a: eGFP and mitfa: eGFP zebrafish in vitro. However, its relative anti-oxidative activity was found to be very low. Overall, our results indicated that 6-benzylaminopurine stimulated pigmentation through a direct mechanism, by increasing melanin content via positive regulation of tyrosinase activity in vitro, as well as up-regulating the expression of the green fluorescent protein in transgenic zebrafish in vivo.
		                        		
		                        		
		                        		
		                        			Alkaloids
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Benzodioxoles
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Benzyl Compounds
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cholecalciferol
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Flavonoids
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Kaempferols
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Melanins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Monophenol Monooxygenase
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Pigmentation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Piperidines
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Polyunsaturated Alkamides
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Purines
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Scopoletin
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Vitiligo
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Zebrafish
		                        			
		                        		
		                        	
4.Correlation between cyclin-dependent kinase inhibitor p27kip1 and trastuzumab-resistance in gastric cancer.
Mengwan WU ; Lihong GUO ; Qiang ZUO
Journal of Central South University(Medical Sciences) 2016;41(5):471-476
		                        		
		                        			OBJECTIVE:
		                        			To investigate the correlation between cyclin-dependent kinase inhibitor p27kip1 and trastuzumab-resistance in gastric cancer.
		                        		
		                        			METHODS:
		                        			We selected HER2-overexpressed human gastric cancer cell line NCI-N87 to establish trastuzumab-resistant NCI-N87/TR cell line by stepwise exposure to different doses of trastuzumab. The 50% inhibitory concentration (IC(50)) of trastuzumab and resistance index (RI) were calculated or analyzed by MTT assay. The expression levels of cdk2 and p27kip1 were detected by Western blot. After the treatment with cdk2 inhibitor (Purvalanol A), the expression levels of relevant proteins in NCI-N87/TR cells were detected by Western blot, and the sensitivity to trastuzumab was analyzed by MTT assay. 
		                        		
		                        			RESULTS:
		                        			Compared with NCI-N87 cells, the expression of cdk2 was significantly increased in NCI-N87/TR cells (P<0.001), while the expression of p27kip1 showed a significant decrease (P<0.001). Restoration of the p27kip1 protein expression by cdk2 inhibitor (Purvalanol A) increased the sensitivity of NCI-N87/TR to trastuzumab.
		                        		
		                        			CONCLUSION
		                        			Down-regulation of p27kip1 might be a mechanism for triggering trastuzumab resistance to gastric cancer cell line NCI-N87.
		                        		
		                        		
		                        		
		                        			Antineoplastic Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cyclin-Dependent Kinase 2
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cyclin-Dependent Kinase Inhibitor p27
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Purines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Stomach Neoplasms
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Trastuzumab
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
5.Effects of the phosphoinostitide-3'-kinase delta inhibitor, CAL-101, in combination with Bortezomib on mantle lymophma cells and exploration of its related mechanism.
Fulian QU ; Bing XIA ; Xiaowu LI ; Shanqi GUO ; Le ZHANG ; Chen TIAN ; Yong YU ; Yizhuo ZHANG ; Email: 18622221239@163.COM.
Chinese Journal of Oncology 2015;37(6):412-417
OBJECTIVETo investigate the effect of CAL-101, a selective inhibitor of PI3Kδ, in combination with bortezomib on the proliferation and apoptosis in human mantle cell lymphoma cell lines Z138, HBL-2 and Jeko-1 in vitro, to explore its mechanisms and provide the foundation for effective treatment strategies against mantle cell lymphoma.
METHODSMTT assay was applied to detect the inhibitory effects of CAL-101 and bortezomib either alone or combined on Z138, HBL-2 and Jeko-1 cells. Calcusyn software was used to analyze the synergistic cytotoxicity. Western blot was used to detect the expression of PI3K-p110σ and p-Akt, Akt, p-ERK and ERK proteins after the cells were exposed to different concentrations of CAL-101. Flow cytometry was employed to assess the apoptosis rate. NF-κB kit was used to determine the changes of location of NF-κB P65, and Western blot was applied to detect the level of caswpase-3 and the phosphorylation of Akt in different groups.
RESULTSCAL-101 and BTZ inhibited the proliferation of Z138, HBL-2 and Jeko-1 cells in a dose- and time-dependent manner. CAL-101/BTZ combination induced significantly synergistic cytotoxicity in the MCL cells. The results of Western blot assay showed that CAL-101 significantly blocked the phosphorylation of Akt and ERK in the MCL cell lines. In addition, CAL-101 combined with BTZ induced pronounced apoptosis (P < 0.01). For example, after the Z138 cells exposed to the drugs for 48 h, the apoptosis rates of the control, CAL-101, BTZ and CAL-101 + BTZ groups were: (2.6 ± 1.8)%, (40.0 ± 3.0)%, (34.0 ± 1.0)%, and (67.4 ± 1.0)%, respectively; and when drug treatment was given to HBL-2 cells over 96 h, the apoptosis rates of these four cell groups were (7.4 ± 0.6)%, (30.7 ± 5.7)%, (12.0 ± 1.0)%, and (85.0 ± 4.0)%, respectively. The combination therapy contributed to the enhanced inactivity of nuclear factor-κB (NF-κB) and Akt inactivation in the MCL cell lines (P < 0.05), however, the casepase-3 activity was up-regulated.
CONCLUSIONSThe combination of CAL-101 and bortezomib is muchmore effective in inhibiting proliferation and promoting apoptosis of mantle cell lymphoma cell lines (Z138, HBL-2 and Jeko-1), which may be mediated through inhibiting PI3K/Akt signaling pathway and the transcription of NF-κB.
Antineoplastic Agents ; pharmacology ; Antineoplastic Combined Chemotherapy Protocols ; pharmacology ; Apoptosis ; drug effects ; Blotting, Western ; Boronic Acids ; Bortezomib ; pharmacology ; Caspase 3 ; metabolism ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Class Ia Phosphatidylinositol 3-Kinase ; antagonists & inhibitors ; Dose-Response Relationship, Drug ; Drug Synergism ; Formazans ; Humans ; Lymphoma, Mantle-Cell ; drug therapy ; pathology ; MAP Kinase Signaling System ; drug effects ; NF-kappa B ; metabolism ; Neoplasm Proteins ; metabolism ; Phosphatidylinositol 3-Kinases ; metabolism ; Phosphorylation ; drug effects ; Proto-Oncogene Proteins c-akt ; metabolism ; Purines ; administration & dosage ; pharmacology ; Pyrazines ; Quinazolinones ; administration & dosage ; pharmacology ; Signal Transduction ; Software ; Tetrazolium Salts
6.Therapeutic efficacy of Bushengzhuyang Fang (Yangjing Capsule) on phytoestrogen-induced erectile dysfunction: an experimental study.
Yu-Chun ZHOU ; Tian-Fu LI ; Zhi-Xing SUN ; Qian FAN ; Tao LIU ; Bao-Fang JIN
National Journal of Andrology 2014;20(12):1103-1108
OBJECTIVETo investigate the effect of Bushengzhuyang Fang (Yangjing Capsule, YJC) on penile erectile function and its action mechanisms in rats.
METHODSFifty-six male SD rats were randomly divided into seven groups of equal number: blank control, daidzein, daidzein + testosterone, daidzein + sildenafil, daidzein + low-dose YJC, daidzein + medium-dose YJC, and daidzein + high-dose YJC. The rats in the blank control group were treated intragastrically with normal saline and those in the other groups with daidzein at the dose of 100 mg per kg per day for 30 days. Then the last five groups received additionally testosterone (4 mg per kg per day), sildenafil (2.5 mg per kg per day), low-dose YJC, (0.315 mg per kg per day), medium-dose YJC (0.63 mg per kg per day), and high-dose YJC (1. 26 mg per kg per day), respectively. At 0, 30 and 60 days of treatment, we observed the apomorphine-induced spontaneous erectile response and pathological changes in the corpus cavernosum of the rats, recorded the number of penile erection and erectile incubation period, and determined the serum levels of testosterone (T) and luteinizing hormone (LH).
RESULTSAt 30 days of treatment, the number of apomorphine-induced erections was decreased, the erectile incubation period prolonged, and the serum levels of T and LH reduced remarkably in all groups of rats (P < 0.05). Compared with the findings at 30 days, the number of penile erections was significantly decreased at 60 days in the daidzein group (1.39 ± 0.42 vs 2.67 ± 0.33, P < 0.05) and daidzein + low-dose YJC group (1.33 ± 0.49 vs 2.83 ± 0.61, P < 0.05); the erectile incubation period was markedly ex- tended ([16.33 ± 3.11] vs [8.50 ± 0.93] min and [15.50 ± 3.21] vs [8.63 ± 1.54] min, P < 0.05); and the serum levels of T ([5.34 ± 0.89] vs [1.24 ± 0.30] ng/ml and [5.28 ± 1.12] vs [2.07 ± 0.76] ng/ml, P < 0.05) and LH ([3.62 ± 0.37] vs [2.09 ± 0.12] ng/ml and [3.79 ± 0.28] vs [2.17 ± 0.33] ng/ml, P < 0.05) were significantly reduced in the daidzein and daidzein + low-dose YJC groups, respectively. Pathological examination revealed slightly decreased cavernous sinuses and blood vessels in the corpus cavernosum of the rats in the daidzein + testosterone, daidzein + sildenafil, daidzein + medium-dose YJC, and daidzein + high-dose YJC groups as compared with those in the blank control group.
CONCLUSIONHigh-dose Yangjing Capsule is efficacious for the recovery of erectile function in rats, especially for phytoestrogen-induced erectile dysfunction.
Animals ; Apomorphine ; pharmacology ; Drugs, Chinese Herbal ; therapeutic use ; Erectile Dysfunction ; chemically induced ; drug therapy ; Humans ; Isoflavones ; pharmacology ; Luteinizing Hormone ; Male ; Penile Erection ; drug effects ; physiology ; Penis ; drug effects ; pathology ; Phytoestrogens ; Phytotherapy ; Piperazines ; therapeutic use ; Purines ; therapeutic use ; Rats ; Rats, Sprague-Dawley ; Sildenafil Citrate ; Sulfonamides ; therapeutic use ; Testosterone ; therapeutic use ; Vasodilator Agents ; therapeutic use
7.Inhibitory effects of roscovitine on proliferation and migration of vascular smooth muscle cells in vitro.
Shuang-shuang ZHANG ; Wei WANG ; Chong-qiang ZHAO ; Min-jie XIE ; Wen-yu LI ; Xiang-li YANG ; Jia-gao LV
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(6):791-795
		                        		
		                        			
		                        			Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are the major cause of in-stent restenosis (ISR). Intervention proliferation and migration of VSMCs is an important strategy for antirestenotic therapy. Roscovitine, a second-generation cyclin-dependent kinase inhibitor, can inhibit cell cycle of multiple cell types. We studied the effects of roscovitine on cell cycle distribution, proliferation and migration of VSMCs in vitro by flow cytometry, BrdU incorporation and wound healing assay, respectively. Our results showed that roscovitine increased the proportion of G0/G1 phase cells after 12 h (69.57±3.65 vs. 92.50±1.68, P=0.000), 24 h (80.87±2.24 vs. 90.25±0.79, P=0.000) and 48 h (88.08±3.86 vs. 88.87±2.43, P=0.427) as compared with control group. Roscovitine inhibited proliferation and migration of VSMCs in a concentration-dependent way. With the increase of concentration, roscovitine showed increased capacity for growth and migration inhibition. Roscovitine (30 μmol/L) led to an almost complete VSMCs growth and migration arrest. Combined with its low toxicity and selective inhibition to ISR-VSMCs, roscovitine may be a potential drug in the treatment of vascular stenosis diseases and particularly useful in the prevention and treatment of ISR.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Cycle
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Graft Occlusion, Vascular
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Muscle, Smooth, Vascular
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Protein Kinase Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Purines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Rats
		                        			
		                        		
		                        	
8.Effect of PI3Kδ inhibitor CAL-101 on myeloma cell lines and preliminary study of synergistic effects with other new drugs.
Qing ZHANG ; Bing XIA ; Fulian QU ; Tian YUAN ; Shanqi GUO ; Weipeng ZHAO ; Qian LI ; Hongliang YANG ; Yafei WANG ; Yizhuo ZHANG
Chinese Journal of Hematology 2014;35(10):926-930
OBJECTIVETo investigate the proliferation inhibitory role and mechanism of PI3Kδ inhibitor CAL-101 on multiple myeloma (MM) cells, and to provide new therapeutic options for MM treatment.
METHODSMM cell lines U266 and RPMI8226 cells were treated with various concentrations of CAL-101. MTT assay and CalcuSyn software were performed to determine the inhibitory effect of CAL-101 and the synergistic effect with PCI- 32765, SAHA (suberoylanilide hydroxamic acid), BTZ (Bortezomib) on MM cells. The protein expression level of p-AKT, p-ERK, AKT, ERK and PI3Kδ processed by CAL-101 were analyzed by Western blot.
RESULTSCAL-101 at concentration of 15, 20, 25, 30 and 40 μmol/L could induce significant dose-dependent proliferation inhibition on U266 cells after treatment for 48 hours. The cell proliferation inhibition rates were (33.54 ± 1.23)%, (41.72 ± 1.78)%, (53.67 ± 2.01)%, (68.97 ± 2.11)% and (79.25 ± 1.92)%, respectively. Similar results were found in RPMI8226 cell line. Western blots showed high expression level of p-AKT, p-ERK, AKT, ERK and PI3Kδ in cell lines and MM primary cells. p-AKT and p-ERK protein expression levels were down-regulated significantly by CAL-101 treatment. Synergistic effect has been verified between CAL-101 and PCI-32765, SAHA and Bortezomib in U266 cell line, and PCI-32765, Bortezomib in RPMI8226 cell line with CI values less than 1.
CONCLUSIONCAL-101 could inhibit proliferation of MM cell lines. High levels of p-AKT, p-ERK, AKT, ERK and PI3Kδ protein expression were observed in both cell lines and primary cells. Down-regulation of p-AKT and p-ERK probably related with the mechanism of CAL-101 in MM cell proliferation inhibition. CAL-101 has significant synergistic effect with PCI-32765, SAHA and BTZ.
Boronic Acids ; Bortezomib ; Cell Line, Tumor ; Cell Proliferation ; Down-Regulation ; Humans ; Multiple Myeloma ; pathology ; Phosphatidylinositol 3-Kinases ; antagonists & inhibitors ; Protein Kinase Inhibitors ; pharmacology ; Purines ; pharmacology ; Pyrazines ; Pyrazoles ; Pyrimidines ; Quinazolinones ; pharmacology
9.Effects of 6-benzylaminopurine and α-naphthaleneacetic acid on growth and isoflavone contents of Pueraria phaseoloides hairy roots.
Chinese Journal of Biotechnology 2014;30(10):1573-1585
		                        		
		                        			
		                        			In order to study the effect of phytohormone on growth and isoflavones contents of Pueraria phaseoloides hairy roots, we cultured the hairy roots with different concentrations of 6-benzylaminopurine (6-BA) alone or in combination with α-naphthaleneacetic acid (NAA). Then we determined the effects of 6-BA alone or in combination with NAA on the growth and the contents of isoflavones compounds and levels of antioxidase activities of hairy roots by spectrophotometry. The results show that 6-BA inhibited the growth, and decreased biomass and total isoflavones compounds of P. phaseoloides hairy roots. Furthermore, the inhibition was increased with the concentrations of 6-BA. Compared with the controls, different concentrations of 6-BA in combination with NAA 2.0 mg/L could inhibit the growth of hairy roots and decrease the content of total isoflavone compounds, and also significantly enhanced the contents of soluble protein and levels of peroxidase (POD) activities, but decreased the activities of superoxide dismutase (SOD). DNA ladders detected by agarose gel electrophoresis can be observed after hairy roots of P. phaseoloides were cultured with 6-BA alone for 30 days, but can appear on the 20th day after culture with 6-BA in combination with NAA 2.0 mg/L. This result indicates that 6-BA or 6-BA in combination with NAA can both stimulate appearance of programmed cell death (PCD), and NAA may play a synergistic role on PCD.
		                        		
		                        		
		                        		
		                        			Benzyl Compounds
		                        			;
		                        		
		                        			Isoflavones
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Kinetin
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Naphthaleneacetic Acids
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Plant Growth Regulators
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Plant Roots
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			Pueraria
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			Purines
		                        			
		                        		
		                        	
10.CAL-101,a novel agent of targeted therapy in hematological malignancies.
Chan-Juan LI ; Qing ZHANG ; Yi-Zhuo ZHANG
Journal of Experimental Hematology 2014;22(2):530-533
		                        		
		                        			
		                        			CAL-101 is a selective inhibitor of the phosphatidylinositol-3 kinase (PI3K), it inhibits the survival, proliferation and migration of tumor cells by directly inducing apoptosis and inhibiting micro-environmental interactions. It has been determined that the P110δ isoforms of PI3K expressed primarily in cells of hematopoietic lineage, such as B and T cells. This review focuses on the target, mechanism of action, the use and prospect of CAL-101 in tumors of blood and lymph systems.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Class Ia Phosphatidylinositol 3-Kinase
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			Hematologic Neoplasms
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Purines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Quinazolinones
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			drug effects
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail