1.Efficacy of transcatheter pulmonary valve perforation in neonates with pulmonary atresia with intact ventricular septum.
Si Bao WANG ; Si Lin PAN ; Gang LUO ; Zhi Xian JI ; Ai LIU ; Yue Yi REN
Chinese Journal of Pediatrics 2023;61(2):126-130
Objective: To explore the efficacy and safety of transcatheter pulmonary valve perforation in the treatment of neonatal pulmonary atresia with intact ventricular septum (PA-IVS). Methods: The clinical data on surgical treatment and follow-up in 16 patients with PA-IVS who underwent transcatheter pulmonary valve perforation in Women and Children's Hospital, Qingdao University from October 2018 to October 2021 were analyzed retrospectively. The right ventricular systolic pressure and percutaneous oxygen saturation (SpO2) were compared before and after operation. In addition, the SpO2 and echocardiographic data at preoperative and the last follow-up were compared. Comparisons between groups were performed using paired-samples t test. Results: Among the 16 patients (10 males and 6 females) with the age at operation of 19 (14, 26) days, 12 cases underwent transcatheter pulmonary valve perforation successfully, 2 cases were transferred to surgery department for open-heart pulmonary valvulotomy, and the remaining 2 cases were transmitted to surgery department for transthoracic pulmonary valve perforation. The age at operation of the 12 patients who underwent transcatheter pulmonary valve perforation was 18 (14, 27) days, and the weight was (3.6±0.4) kg. The immediate postoperative right ventricular systolic pressure decreased significantly ((57±16) vs. (95±19) mmHg (1 mmHg=0.133 kPa), t=7.49, P<0.001), and the postoperative SpO2 was improved effectively (0.90±0.48 vs.0.75±0.09, t=-5.61, P<0.001). The follow-up time was 22 (7, 33) months for 12 patients who underwent transcatheter pulmonary valve perforation successfully. At the last follow-up, the ratio of right to left ventricular transverse diameter was significantly higher than that before operative (0.55±0.05 vs. 0.45±0.05, t=-3.27,P=0.007). Furthermore, the Z-scores of pulmonary valvular diameter (-0.78±0.23 vs. -1.73±0.56, t=-8.52, P<0.001) and the tricuspid valvular diameter (-0.52±0.12 vs. -1.46±0.38, t=-10.40, P<0.001) were all significantly higher than preoperative data. At last, all the patients achieved biventricular circulation without death or major complications. Conclusion: Transcatheter pulmonary valve perforation is a safe and effective therapy for neonatal PA-IVS, and its curative effect has been confirmed by the medium follow-up data.
Child
;
Male
;
Infant, Newborn
;
Humans
;
Female
;
Pulmonary Valve/surgery*
;
Retrospective Studies
;
Pulmonary Atresia/surgery*
;
Heart Defects, Congenital
2.Preliminary experience of transcatheter pulmonary valve replacement using domestic balloon-expandable valve.
Zhen Gang ZHAO ; Rui Tao LI ; Xin WEI ; Yong PENG ; Jia Fu WEI ; Sen HE ; Qiao LI ; Xiao LI ; Yi Jian LI ; Xiang LI ; Xuan ZHOU ; Ming Xia ZHENG ; Guo CHEN ; Qi AN ; Mao CHEN ; Yuan FENG
Chinese Journal of Cardiology 2023;51(8):825-831
Objectives: To evaluate the feasibility and preliminary clinical results of transcatheter pulmonary valve replacement (TPVR) with the domestically-produced balloon-expandable Prizvalve system. Methods: This is a prospective single-center observational study. Patients with postoperative right ventricular outflow tract (RVOT) dysfunction, who were admitted to West China Hospital of Sichuan University from September 2021 to March 2023 and deemed anatomically suitable for TPVR with balloon-expandable valve, were included. Clinical, imaging, procedural and follow-up data were analyzed. The immediate procedural results were evaluated by clinical implant success rate, which is defined as successful valve implantation with echocardiography-assessed pulmonary regurgitation
Male
;
Humans
;
Pulmonary Valve/surgery*
;
Heart Valve Prosthesis/adverse effects*
;
Heart Valve Prosthesis Implantation
;
Constriction, Pathologic/surgery*
;
Prospective Studies
;
Ventricular Outflow Obstruction/surgery*
;
Treatment Outcome
;
Cardiac Catheterization/methods*
;
Transcatheter Aortic Valve Replacement
3.Preliminary experience of transcatheter pulmonary valve replacement using domestic balloon-expandable valve.
Zhen Gang ZHAO ; Rui Tao LI ; Xin WEI ; Yong PENG ; Jia Fu WEI ; Sen HE ; Qiao LI ; Xiao LI ; Yi Jian LI ; Xiang LI ; Xuan ZHOU ; Ming Xia ZHENG ; Guo CHEN ; Qi AN ; Mao CHEN ; Yuan FENG
Chinese Journal of Cardiology 2023;51(8):825-831
Objectives: To evaluate the feasibility and preliminary clinical results of transcatheter pulmonary valve replacement (TPVR) with the domestically-produced balloon-expandable Prizvalve system. Methods: This is a prospective single-center observational study. Patients with postoperative right ventricular outflow tract (RVOT) dysfunction, who were admitted to West China Hospital of Sichuan University from September 2021 to March 2023 and deemed anatomically suitable for TPVR with balloon-expandable valve, were included. Clinical, imaging, procedural and follow-up data were analyzed. The immediate procedural results were evaluated by clinical implant success rate, which is defined as successful valve implantation with echocardiography-assessed pulmonary regurgitation
Male
;
Humans
;
Pulmonary Valve/surgery*
;
Heart Valve Prosthesis/adverse effects*
;
Heart Valve Prosthesis Implantation
;
Constriction, Pathologic/surgery*
;
Prospective Studies
;
Ventricular Outflow Obstruction/surgery*
;
Treatment Outcome
;
Cardiac Catheterization/methods*
;
Transcatheter Aortic Valve Replacement
4.Hand-sewn expanded polytetrafluoroethylene valved conduit for right ventricular outflow tract reconstruction.
Tao QIAN ; Can HUANG ; Ting LU ; Hong ZHANG ; Haoyong YUAN ; Li XIE ; Zhongshi WU
Journal of Central South University(Medical Sciences) 2022;47(1):94-100
OBJECTIVES:
Due to the lack of large-sized pulmonary valved conduit products in clinical practice, hand-sewn expanded polytetrafluoroethylene (ePTFE) valved conduit has been used for right ventricular outflow tract (RVOT) reconstruction in many heart centers around the world. This study aims to summarize the early results of the ePTFE valved conduit and the sewing technology of the conduit in combination with the latest progress, and to provide a reference for the application of ePTFE valved conduit.
METHODS:
A total of 21 patients using ePTFE valved conduit for RVOT reconstruction in the Second Xiangya Hospital, Central South University from October 2018 to October 2020 were prospectively enrolled in this study. The age at the implantation of the conduit was 4.3 to 43.8 (median 15.1) years old, with weight of (38.9±4.1) kg. In this cohort, 14 patients underwent re-reconstruction of RVOT, including 12 patients with pulmonary regurgitation at 6.3 to 31.0 (median 13.8) years after tetralogy of Fallot (TOF) repair, and 2 patients with failed bovine jugular vein conduit (BJVC). Seven patients underwent Ross operations. Among them, 3 were for aortic valve stenosis, 2 were for aortic regurgitation, and 2 were for both stenosis and regurgitation. The ePTFE valved conduits were standard hand-sewn during the surgery. The 3 leaflets were equal in size with arc-shaped lower edge of the valve sinus. The free edge of the valve leaflets was straight with the length of about 1 mm longer than the diameter. The height of the valve sinus was 4/5 of the diameter. The junction of the valve leaflet was 3/4 of the height of the sinus. The designed leaflets were then continuous non-penetrating sutured into the inner surface of Gore-Tex vessel to make a valved conduit. Valved conduits with diameter of 18, 20, and 22 mm were used in 2, 9, and 10 cases, respectively. The surgical results, postoperative recovery time, and serious complications were summarized, and the changes of postoperative cardiac function status and hemodynamic status of the conduits were investigated.
RESULTS:
During the implantation of ePTFE valved conduit for RVOT reconstruction, 2 patients underwent mechanical mitral valve replacement with Ross operation, 2 patients with pulmonary regurgitation with repaired TOF underwent left and right pulmonary artery angioplasty, and 1 patient with failed BJVC underwent tricuspid valvuloplasty. The cardiopulmonary bypassing time for patients underwent re-reconstruction of RVOT was (130.9±16.9) min, with aorta clamping for 1 patient to repair the residual defect of the ventricular septum. The cardiopulmonary bypassing and aorta clamping time for Ross operation were (242.7±20.6) min and (145.6±10.5) min, respectively. The duration of postoperative ventilator assistance, intensive care unit stay, and hospital stay were 3.5 h to 7.7 d (median 17.1 h),11.2 h to 29.5 d (median 1.9 d), and 6.0 to 56.0 (median 13.0) d, respectively. All patients survived after discharge from hospital. The follow-up rate after discharge was 100% with median time at 15.0 (13.0 to 39.0) months. No death happened during the follow-up. One patient underwent stent implantation due to right coronary stenosis 2 months after Ross operation. One patient underwent balloon dilation due to right pulmonary artery ostium stenosis 1 year after re-reconstruction of RVOT. The cardiac function of all patients recovered to NYHA class I 6 months after operation. The peak pressure gradient across the valve measured by transthoracic echocardiography before discharge was (9.4±2.6) mmHg (1 mmHg=0.133 kPa), and (18.3±6.1) mmHg at the last follow-up. There was no significant increase in the gradient during the follow-up (P=0.134). No patient suffered from mild or more pulmonary regurgitation.
CONCLUSIONS
Hand-sewn ePTFE valved conduit is feasible for RVOT reconstruction. It is a promising material for RVOT reconstruction which can effectively meet clinical need. In our experience, the ePTFE valved conduit is simple to manufacture with satisfactory early outcomes.In the application of ePTFE valved conduit, attention should be paid to implantation indications and postoperative anticoagulation management, especially to the preparation details of the valved conduit, to obtain better function and durability of the conduit after implantation.
Adolescent
;
Animals
;
Cattle
;
Constriction, Pathologic/surgery*
;
Heart Valve Prosthesis/adverse effects*
;
Heart Valve Prosthesis Implantation/methods*
;
Humans
;
Infant
;
Polytetrafluoroethylene
;
Prosthesis Design
;
Pulmonary Valve Insufficiency/surgery*
;
Retrospective Studies
;
Treatment Outcome
;
Ventricular Outflow Obstruction/surgery*
6.Recent advances in pediatric interventional cardiology.
Korean Journal of Pediatrics 2017;60(8):237-244
During the last 10 years, there have been major technological achievements in pediatric interventional cardiology. In addition, there have been several advances in cardiac imaging, especially in 3-dimensional imaging of echocardiography, computed tomography, magnetic resonance imaging, and cineangiography. Therefore, more types of congenital heart diseases can be treated in the cardiac catheter laboratory today than ever before. Furthermore, lesions previously considered resistant to interventional therapies can now be managed with high success rates. The hybrid approach has enabled the overcoming of limitations inherent to percutaneous access, expanding the application of endovascular therapies as adjunct to surgical interventions to improve patient outcomes and minimize invasiveness. Percutaneous pulmonary valve implantation has become a successful alternative therapy. However, most of the current recommendations about pediatric cardiac interventions (including class I recommendations) refer to off-label use of devices, because it is difficult to study the safety and efficacy of catheterization and transcatheter therapy in pediatric cardiac patients. This difficulty arises from the challenge of identifying a control population and the relatively small number of pediatric patients with congenital heart disease. Nevertheless, the pediatric interventional cardiology community has continued to develop less invasive solutions for congenital heart defects to minimize the need for open heart surgery and optimize overall outcomes. In this review, various interventional procedures in patients with congenital heart disease are explored.
Cardiac Catheters
;
Cardiology*
;
Catheterization
;
Catheters
;
Cineangiography
;
Echocardiography
;
Heart Defects, Congenital
;
Heart Diseases
;
Humans
;
Magnetic Resonance Imaging
;
Off-Label Use
;
Pulmonary Valve
;
Thoracic Surgery
7.Three-dimensional echocardiography in adult congenital heart disease.
The Korean Journal of Internal Medicine 2017;32(4):577-588
Congenital heart disease (CHD) is now more common in adults than in children due to improvements in fetal echo, neonatal and pediatric care, and surgical techniques leading to dramatically increased survivability into adulthood. Adult patients with CHD, regardless of prior cardiac surgery, experience further cardiac problems or therapeutic challenges; therefore, a non-invasive, easily accessible echocardiographic examination is an essential follow-up tool. Among echocardiographic modalities, three-dimensional (3D) echocardiography provides better delineation of spatial relationships in complex cardiac geometries and more accurate volumetric information without geometric assumptions. For atrial septal defects, an en face view of the tissue defect allows better decisions on device closure. For tricuspid valve malformations, an en face view provides diagnostic information that is difficult to obtain from routine 2D tomography. In repaired tetralogy of fallot with pulmonary regurgitation, preoperative 3D echocardiography- based right ventricular volume may be used to determine the timing of a pulmonary valve replacement in conjunction with cardiovascular magnetic imaging. For optimal adult CHD care, 3D echocardiography is an important complement to routine 2D echocardiography.
Adult*
;
Child
;
Complement System Proteins
;
Echocardiography
;
Echocardiography, Three-Dimensional*
;
Follow-Up Studies
;
Heart Defects, Congenital*
;
Heart Septal Defects, Atrial
;
Humans
;
Pulmonary Valve
;
Pulmonary Valve Insufficiency
;
Tetralogy of Fallot
;
Thoracic Surgery
;
Tricuspid Valve
8.Surgical Treatment of Double Outlet Right Ventricle Complicated by Pulmonary Hypertension.
Qing-Yu WU ; Dong-Hai LI ; Hong-Yin LI ; Ming-Kui ZHANG ; Zhong-Hua XU ; Hui XUE
Chinese Medical Journal 2017;130(4):409-413
BACKGROUNDDouble outlet right ventricle (DORV) is a group of complex congenital heart abnormalities. Preoperative pulmonary hypertension (PH) is considered an important risk factor for early death during the surgical treatment of DORV. The aim of this study was to report our experience on surgical treatment of DORV complicated by PH.
METHODSFrom June 2004 to November 2016, 61 patients (36 males and 25 females) aged 2 weeks to 26 years (median: 0.67 years and interquartile range: 0.42-1.67 years) with DORV (two great arteries overriding at least 50%) complicated by PH underwent surgical treatment in our center. All patients were categorized according to surgical age and lesion type, respectively. Pulmonary artery systolic pressure (PASP), pulmonary artery diastolic pressure (PADP), and mean pulmonary artery pressure (mPAP) were measured directly before cardiopulmonary bypass (CPB) was established and after CPB was removed. An intracardiac channel procedure was performed in 37 patients, arterial switch procedure in 19 patients, Rastelli procedure in three patient, Senning procedure in one patients, and Mustard procedure in one patient. The Student's t-test and Chi-squared test were performed to evaluate clinical outcomes of the surgical timing and operation choice.
RESULTSFifty-five patients had uneventful recovery. PASP fell from 55.3 ± 11.2 mmHg to 34.7 ± 11.6 mmHg (t = 14.05, P < 0.001), PADP fell from 29.7 ± 12.5 mmHg to 18.6 ± 7.9 mmHg (t = 7.39, P < 0.001), and mPAP fell from 40.3 ± 10.6 mmHg to 25.7 ± 8.3 mmHg (t = 11.85, P < 0.001). Six (9.8%) patients died owing to complications including low cardiac output syndrome in two patients, respiratory failure in two, pulmonary hemorrhage in one, and sudden death in one patient. Pulmonary artery pressure (PAP) dropped significantly in infant and child patients. Mortality of both infants (13.9%) and adults (33.3%) was high.
CONCLUSIONSPAP of patients with DORV complicated by PH can be expected to fall significantly after surgery. An arterial switch procedure can achieve excellent results in patients with transposition of the great arteries type. Higher incidence of complications may occur in patients with ventricular septal defect (VSD) type before 1 year of age. For those with remote VSD type, VSD enlargement and right ventricle outflow tract reconstruction are usually required with acceptable results. The degree of aortic overriding does not influence surgical outcome.
Adolescent ; Adult ; Cardiac Surgical Procedures ; methods ; Child ; Child, Preschool ; Double Outlet Right Ventricle ; surgery ; Female ; Heart Septal Defects, Ventricular ; surgery ; Heart Ventricles ; surgery ; Humans ; Hypertension, Pulmonary ; complications ; Infant ; Male ; Pulmonary Valve Stenosis ; surgery ; Risk Factors ; Transposition of Great Vessels ; surgery ; Treatment Outcome ; Young Adult
10.Henoch-Schonlein purpura secondary to infective endocarditis in a patient with pulmonary valve stenosis and a ventricular septal defect.
Sung Eun HA ; Tae Hyun BAN ; Sung Min JUNG ; Kang Nam BAE ; Byung Ha CHUNG ; Cheol Whee PARK ; Bum Soon CHOI
The Korean Journal of Internal Medicine 2015;30(3):406-410
No abstract available.
Anti-Bacterial Agents/therapeutic use
;
Biopsy
;
Echocardiography, Doppler, Color
;
Echocardiography, Transesophageal
;
Endocarditis, Bacterial/complications/diagnosis/drug therapy/*microbiology
;
Fluorescent Antibody Technique
;
Heart Septal Defects, Ventricular/*complications/diagnosis/surgery
;
Humans
;
Male
;
Middle Aged
;
Predictive Value of Tests
;
Pulmonary Valve Stenosis/*complications/diagnosis
;
Purpura, Schoenlein-Henoch/diagnosis/drug therapy/*etiology
;
Risk Factors

Result Analysis
Print
Save
E-mail