1.Effects of Yiqi Huayu Hutan decoction on pulmonary fibrosis in rats and its mechanism.
Sheng TIAN ; Wen Fu CAO ; Yong Yue ZHANG ; Qing WU
Chinese Journal of Applied Physiology 2019;35(2):101-106
OBJECTIVE:
To investigate the effects of Yiqi Huayu Hutan decoction on pulmonary fibrosis of rats which induced by bleomycin.
METHODS:
The rat model of pulmonary fibrosis was induced by intratracheal injection of bleomycin hydrochloride (5 mg/kg). Sixty SD rats were randomly divided into the normal group (group N), the model group (group M), the positive control group (group Y), group of low concentration (group LC), group of medium concentration (group MC) and group of high concentration of Yiqi Huayu Hutan decoction (group HC). After 4 weeks, the experimental groups were treated with low concentration decoction, medium concentration decoction and high concentration decoction respectively, and the Y group was treated with hydrocortisone acetate, the Group N and group M were treated with saline by intragastric administration. Twelve weeks later, rats were killed and the pathomorphism of pulmonary tissues of each group was observed by HE staining and Masson staining. Further, the expressions of transforming growth factor-β1(TGF-β1), Snail1, E-cadherin and Fibronectin in pulmonary tissues of each group were detected by qTR-PCR and Western blot.
RESULTS:
Compared with the model group, the collagen sediment in the interstitial was reduced in the experimental groups, especially in the group of medium concentration, which was observed by HE staining and Masson staining .Compared with the model group, the expressions of TGF-β1, Snail1 and Fibronectin protein in pulmonary tissues of the treatment groups were decreased in the experimental group, especially in the group of medium concentration, which were detected by qRT-PCR and Western blot.
CONCLUSION
Yiqi Huayu Hutan decoction can significantly improve the pulmonary fibrosis which is induced by bleomycin, and the mechanism is related to the inhibition of the expression of TGF-β/Snail pathway of transcription TGF-β1.
Animals
;
Bleomycin
;
Cadherins
;
metabolism
;
Drugs, Chinese Herbal
;
pharmacology
;
Fibronectins
;
metabolism
;
Idiopathic Pulmonary Fibrosis
;
chemically induced
;
drug therapy
;
Lung
;
metabolism
;
pathology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Snail Family Transcription Factors
;
metabolism
;
Transforming Growth Factor beta1
;
metabolism
2.Pulmonary Toxicity in Rats Caused by Exposure to Intratracheal Instillation of SiO2 Nanoparticles.
Hong YANG ; Qiu Yun WU ; ; Ming Yue LI ; Can Shan LAO ; Ying Jian ZHANG ;
Biomedical and Environmental Sciences 2017;30(4):264-279
OBJECTIVEThe effect of the silica nanoparticles (SNs) on lungs injury in rats was investigated to evaluate the toxicity and possible mechanisms for SNs.
METHODSMale Wistar rats were instilled intratracheally with 1 mL of saline containing 6.25, 12.5, and 25.0 mg of SNs or 25.0 mg of microscale SiO2 particles suspensions for 30 d, were then sacrificed. Histopathological and ultrastructural change in lungs, and chemical components in the urine excretions were investigated by light microscope, TEM and EDS. MDA, NO and hydroxyproline (Hyp) in lung homogenates were quantified by spectrophotometry. Contents of TNF-α, TGF-β1, IL-1β, and MMP-2 in lung tissue were determined by immunohistochemistry staining.
RESULTSThere is massive excretion of Si substance in urine. The SNs lead pulmonary lesions of rise in lung/body coefficients, lung inflammation, damaged alveoli, granuloma nodules formation, and collagen metabolized perturbation, and lung tissue damage is milder than those of microscale SiO2 particles. The SNs also cause increase lipid peroxidation and high expression of cytokines.
CONCLUSIONThe SNs result into pulmonary fibrosis by means of increase lipid peroxidation and high expression of cytokines. Milder effect of the SNs on pulmonary fibrosis comparing to microscale SiO2 particles is contributed to its elimination from urine due to their ultrafine particle size.
Air Pollutants ; toxicity ; Animals ; Dose-Response Relationship, Drug ; Lung ; drug effects ; pathology ; ultrastructure ; Male ; Microscopy, Electron, Transmission ; Nanoparticles ; toxicity ; Pulmonary Fibrosis ; chemically induced ; metabolism ; pathology ; Random Allocation ; Rats ; Rats, Wistar ; Silicon Dioxide ; toxicity ; Specific Pathogen-Free Organisms ; Spectrometry, X-Ray Emission ; Urine ; chemistry
3.Study on the therapeutic effects of tetrandrine combined with N-acetylcysteine on experimental silicosis of rats.
Yun XIAO ; Hailing XIA ; Lijin ZHU ; Xianfeng LI ; Riping CHEN ; Xianhong YIN ; Zhaoqiang JIANG ; Lingfang FENG ; Junqiang CHEN ; Min YU ; Jianlin LOU ; Xing ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(7):519-522
OBJECTIVETo compare the effects of oral treatment with tetrandrine (TD) and N-acetylcys-teine (NAC) separately or jointly on silica-exposed rats.
METHODS40 sprague-Dawly (SD) rats were randomly divided into normal saline group, quartz group, TD treatment group (50 mg/kg), NAC treatment group (500 mg/kg) and combined treatment group (TD: 50 mg/kg + NAC: 500 mg/kg). Rats in normal saline group and other groups received intratracheal instillation of normal saline and quartz dust suspension respectively. Treatment groups were given TD, NAC separately or jointly via esophagus the next day after instillation, once a day and six times a week for 30 consecutive days. At the end of experiment, the pathological changes of lung tissues were evaluated by the methods of Foot, HE and Masson staining, the level of hydroxyproline (HYP), malondjalde-hyde (MDA), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in lung tissues were measured by alkaline hydrolysis method, the barbituric acid method and enzyme-linked immunosorbent assay (ELISA) respectively.
RESULTSCompared with the quartz group, lymph nodes/body coefficients in all treatment groups and lung/body coefficient in combined treatment group were significantly decreased (P < 0.05). Pathology results showed that the normal saline group demonstrated no obvious evidence of lung damage. The quartz group lungs silicotic lesions focused on II~III level, the TD treatment group was mainly with I level, the NAC treatment group was mainly with I~II level, and the combined treatment group only showed little silicotic nodule, no obvious fibrosis. HYP content in TD treatment group and combined treatment group were significantly lower than that in the quartz group (P < 0.05), while it showed no obvious change in NAC treatment group. MDA content in lung tissues of each treatment group (TD treatment group, NAC treatment group and combined treatment group) were 18.80 ± 2.94, 20.13 ± 4.01 and 17.05 ± 3.52 nmol/ml respectively, which lower than in the quartz group (23.99 ± 3.26 nmol/ml). The level of IL-6 in lung tissues of the quartz group were 89.57 ± 8.78 pg/ml. After TD and NAC monotherapy, the IL-6 content decreased to 79.22 ± 9.65 pg/ml and 81.63 ± 5.72 pg/ml, and it decreased more significantly after combined medication (74.37 ± 3.17 pg/ml). The level of TNF-α in the quartz group were 59.05 ± 4.48 pg/ml. After TD and NAC monotherapy, the TNF-α content decreased to 50.48 ± 2.76 pg/ml and 54.28 ± 4.30 pg/ml, and it decreased more significantly after combined medication (49.10 ± 4.98 pg/ml).
CONCLUSIONNAC and TD could reduce MDA, TNF-α and IL-6 levels in lung tissue, and alleviate SiO2-induced pulmonary fibrosis in rats. Combined treatment with TD and NAC was more effective than TD or NAC treatment separately.
Acetylcysteine ; pharmacology ; Animals ; Benzylisoquinolines ; pharmacology ; Disease Models, Animal ; Dust ; Hydroxyproline ; metabolism ; Interleukin-6 ; metabolism ; Lung ; pathology ; Malondialdehyde ; metabolism ; Pulmonary Fibrosis ; chemically induced ; drug therapy ; Quartz ; toxicity ; Rats ; Rats, Wistar ; Silicon Dioxide ; toxicity ; Silicosis ; drug therapy ; Tumor Necrosis Factor-alpha ; metabolism
4.Effect of total flavonoids from astragalus complanatus on paraquat poisoning-induced pulmonary fibrosis in rats and its mechanisms.
Zhijian ZHANG ; Yaoyao DONG ; Yunfan HUANG ; Libo PENG ; E-mail: PLBBNICU@YEAH.NET.
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(11):838-840
OBJECTIVETo investigate the effects of total flavonoids from astragalus complanatus (FAC) on paraquat poisoning-induced pulmonary fibrosis in rats.
METHODSThe rats were divided into six groups randomly: control group, paraquat group, prednisolone group and FAC low-dose, middle-dose, high-dose group. Pulmonary fibrosis model was replicated by intratracheal injection of paraquat. In the mext day,the rats were treated by intragastric administration once a day. After 28 days, the rats were sacrificed. The lung index and the levels of HYP and T-AOC were measured, and the pathologic changes of the lung tissue were obtained by HE staining. The levels of TGF-β, Smad2, α-SMA protein were analyzed by Western blot.
RESULTSFAC improved the activity of T-AOC in serum and reduced pulmonary index and the content of HYP as well (P<0.05 or P<0.01), the alveolitis and fibrosis extent were attenuated. The expression of Smad2 significantly decreased in groups of FAC low-dose, middle-dose and high-dose (0.31±0.11, 0.45±0.12 and 0.30±0.05) as compared with that of the PQ group (0.85±0.34) (P<0.05). The expression of α-SMA significantly decreased in groups of FAC low-dose, middle-dose and high-dose (0.31±0.11, 0.35±0.07 and 0.32±0.10) as compared with that of the PQ group (0.45±0.08) (P<0.05). The expression of TGF-β significantly decreased in groups of FAC low-dose, middle-dose and high-dose (0.35±0.04, 0.27±0.05 and 0.18±0.04)as compared with that of the PQ group (0.63±0.11) (P<0.05).
CONCLUSIONFAC can alleviate PQ-induced pulmonary fibrosis in rats through inhibiting TGF-β/Smad signaling pathway.
Actins ; metabolism ; Animals ; Astragalus Plant ; chemistry ; Flavonoids ; pharmacology ; Lung ; pathology ; Paraquat ; poisoning ; Phytochemicals ; pharmacology ; Pulmonary Fibrosis ; chemically induced ; drug therapy ; Rats ; Smad2 Protein ; metabolism ; Transforming Growth Factor beta ; metabolism
6.The prevention and therapeutics effect of sodium bicarbonate with gastric lavage, atomization inhalation and intravenous injection on the patients with paraquat poisoning and pulmonary fibrosis induced by paraquat poisoning.
Ainong REN ; Siqing REN ; Xiangdong JIAN ; Qing ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(9):693-694
OBJECTIVETo observe the prevention effects of patients with lung exudation and pulmonary fibrosis induced by paraquat poisoning in sodium bicarbonate (SB) with gastric lavage, atomization inhalation and intravenous injection.
METHODSTo collect 38 patients with paraquat poisoning in hospital, after poison immediately with gastric lavage of 1.5% SB, and atomization inhalation of 5% SB 10~15 ml twice daily and intravenous injection of 5% SB twice a day, continuous application of 5~7 days. and the HRCT score and liver and kidney function was performed on patients with lung after treatment. And the extraction of 38 SB patients with previously untreated with SB for comparison.
RESULTSLung HRCT average score in 72 h, 7 d, 30 d on patients with paraquat poisoning untreated with SB reached 2.87, 3.12, 2.13, HRCT display shows that the appearance of the wear glass shadow, grid shadow, honeycomb shadow, and other signs of fibrosis. Average HRCT reached 1.95, 2.20, 1.67 on patients treated with SB,signs of lung exudation and fibrosis was significantly reduced,compare two groups,there was statistically significance (P<0.01). And compared to the control group, activity of serum alanine aminotransferase (ALT) and aspartic acid transaminase (AST) decreased significantly in group of paraquat poisoning with triple application of SB, the level of serum urea nitrogen (BUN) and creatinine (Cr) significantly decreased, the difference is statistically significant (P<0.01).
CONCLUSIONThe triple application of SB can reduced the pulmonary fibrosis and effusion induced by paraquat poisoning,and protective effect on the function of liver and kidney is obvious, suggesting that the method for treatment of paraquat poisoning, prevention of paraquat lung and improve survival rate has the exact effect.
Blood Urea Nitrogen ; Creatinine ; blood ; Gastric Lavage ; Humans ; Injections, Intravenous ; Lung ; pathology ; Paraquat ; poisoning ; Pulmonary Fibrosis ; chemically induced ; therapy ; Sodium Bicarbonate ; therapeutic use ; Survival Rate
7.Preliminary study on the biological effects of MiR-144 in pulmonary injury in rats induced by nanosized SiO₂.
Canshan LAO ; Yingjian ZHANG ; Wenchao LI ; Mingyue LI ; Hong YANG ; E-mail: YANGHONGR@SEU.EDU.CN.
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(9):641-645
OBJECTIVETo Investigate the biological effects of miR-144 in rats' pulmanory injury induced by nanosized SiO₂preliminarily.
METHOD150 healthy SD rats were divided into five groups randomly: the control group, the nanosized SiO₂groups of 6.25, 12.5, 25.0 mg/ml, and the microsized SiO₂group of 25.0 mg/ml, 30 rats each group. Six rats were sacrificed for their pathological change on the 7th, 15th, 30th, 60th and 90th day after exposure. The expression levels of mature miR-144 in lung tissue of the rats after instilled intracheally nanosized SiO₂at 90d was detected by Quantitative Reverse Transcription PCR. Target prediction for miR-144 was conducted by databases of Target-scan, microRNA.org and miRDB. Function-significant enrichment analysis and signal pathway analysis for predicted target genes were respectively conducted by the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes, then target genes related to pulmonary fibrosis were screened out.
RESULTSThe expression of miR-144 was up-regulated in lung tissue of rats exposed to nanosized SiO₂. The result was consistent with the results of high-throughput sequencing Hiseq 2000. The target genes of miR-144 related to fibrosis or signal pathway involved in fibrosis were screened out.They are SMAD4, SMAD5, ADAMTS3, ADAMTS15 and ADAMTS19.
CONCLUSIONMiR-144 probably participate in the regulation of fibrosis, which may play an important role in pulmonary injury induced by nanosized SiO₂.
Animals ; Lung ; pathology ; Lung Injury ; chemically induced ; metabolism ; pathology ; MicroRNAs ; metabolism ; Nanoparticles ; adverse effects ; Pulmonary Fibrosis ; metabolism ; pathology ; Rats ; Rats, Sprague-Dawley ; Signal Transduction ; Silicon Dioxide ; toxicity
8.Dynamic changes of pathological morphology and ultrastructure of lung injury in rats induced by SiO₂ nanoparticles.
Yingjian ZHANG ; Wenchao LI ; Yi ZHENG ; Xuefei WANG ; Ganyun LI ; Hong YANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2014;32(7):504-510
OBJECTIVETo observe the lung injury in rats induced by SiO₂ nanoparticles.
METHODSOne hundred and fifty SD rats were divided into five groups: the control group, the nanosized SiO₂ groups of 6.25, 12.5, 25 mg/ml, and the microsized SiO₂ group of 25 mg/ml, 30 rats each group. On the 7th, 15th, 30th, 60th and 90th day after exposure, six rats were sacrificed at each time point and the lung viscera coefficient, the pathological morphology and ultrastructure of lung were observed.
RESULTSAt each time point, the rat lung viscera coefficient of 25 mg/ml microsized SiO₂ and nanosized SiO₂ group were higher than the physiological saline group (P < 0.05), 25 mg/ml microsized SiO₂ group was higher than the same dose of nanosized SiO₂ group (P < 0.05); With longer duration of dye dust, lung viscera coefficient of 25 mg/ml microsized SiO₂ group and each dose of nanosized SiO₂ group were in time-effect relationship. Under light microscope we can see microsized SiO₂ group gradually formed cellularity nodules, and fused into fibrous nodules; At the early stage 25 mg/ml nanosized SiO₂ group occured focal alveolar macrophages and fibroblast proliferation and later fibrous connective tissue proliferated. Under TEM osmium lamellar corpuscle of type II alveolar epithelial cells were abnormal, and collagen and elastic fiber proliferated in mesenchyme of microsized and nanosized SiO₂ group.
CONCLUSIONNanosized SiO₂ particles after exposure can cause lung tissue injury in rat, and at the early stage it is showed inflammation, and later mainly characterized by pulmonary interstitial fibrosis differing from nodular lung fibrosis caused by microsized SiO₂, its ability to fibrosis is weaker compared with the same concentration of microsized SiO₂.
Animals ; Lung ; drug effects ; pathology ; ultrastructure ; Lung Injury ; chemically induced ; Male ; Nanoparticles ; toxicity ; Pulmonary Fibrosis ; chemically induced ; pathology ; Rats ; Rats, Sprague-Dawley ; Silicon Dioxide ; toxicity
9.Progress on pathogenesis and treatment of paraquat-induced pulmonary fibrosis.
Journal of Zhejiang University. Medical sciences 2014;43(6):717-727
Paraquat (PQ) is a highly effective herbicide with contact toxicity. PQ mainly accumulates in the lungs after absorption into the blood circulation. The respiratory function failure caused by PQ-induced lung injury, especially the irreversible pulmonary fibrosis in late phase, is the leading cause of death in patients with PQ poisoning. The mechanism of PQ poisoning is still unclear. Now it is speculated that oxidative stress and inflammation injury are the main pathogenic mechanisms, and abnormal gene expression, mitochondrial damage, loss of pulmonary surfactant, cytokine network and unbalanced matrix metalloproteinases/tissue inhibitors may be also involved in the pathogenesis. In addition to reducing poison absorption and increasing its removal, the current clinical treatment is mainly composed of antioxidant and anti-immune response, but has poor therapeutic effects. Although many novel methods of treatment have been proposed, most of them are still in the experimental stage. It is a hot spot to clarify the mechanism of PQ poisoning and to seek safe and effective treatment of pulmonary fibrosis. This article reviews the research progress on pathogenesis and treatment of PQ-induced pulmonary fibrosis.
Antioxidants
;
Gene Expression
;
Humans
;
Inflammation
;
Lung
;
pathology
;
Oxidative Stress
;
Paraquat
;
poisoning
;
Pulmonary Fibrosis
;
chemically induced
;
pathology
;
therapy
10.The pulmonary toxicity study of nano-silica particles on rats through dynamic inhalation.
Ping YANG ; Jun ZHANG ; Yong XIA ; Fei HUANG ; Yu-ying XU ; Yi-fan ZHENG ; Jun YANG ; Xin-qiang ZHU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2013;31(7):487-491
OBJECTIVETo investigate the pulmonary toxicity of different concentrations of nano-silica (nano-SiO2) under continuous dynamic inhalation conditions in the rat.
METHODS48 male Sprague-Dawley rats were randomly divided into four groups, including the dispersant control group (saline) and nano-SiO2 low-dose group (0.3%, w/v), the middle-dose group (1%) and the high-dose group (3%). Animals were sacrificed at 28 d after exposure under continuous dynamic inhalation conditions, and bronchoalveolar lavage fluid (BALF) and lung tissue were collected. And following items were observed: body coefficient, BALF related items (leukocytes and classification, total protein content, LDH activity), lung tissue pathological changes (HE staining), and pulmonary fibrosis forming (collagen fiber VG staining).
RESULTSCompared to the dispersant control group, there was no significant change on lung organ coefficient in Nano-SiO2 group (P < 0.05). The BALF total WBC count in 1% and 3% in nano-SiO2 groups showed higher value than the dispersant control group (P < 0.05). No obvious changes were found on total protein content and LDH activity in nano-SiO2 groups compared to the dispersant control group (P > 0.05). For differential WBC counts, lymphocyte count in BALF in nano-SiO2 groups was significantly decreased (P < 0.05), monocyte and macrophage counts were significantly increased (P < 0.05), but there was no difference on the proportion of neutrophils (P > 0.05). HE staining results showed that the obvious thickening of alveolar wall in nano-SiO2 groups, inflammatory cell infiltration also increased around the bronchial and vascular wall. Lung fibrosis VG staining showed no significant change of collagen fiber distribution.
CONCLUSIONUnder our experimental conditions, the continuous dynamic inhalation of nano-SiO2 only caused the significant inflammation in rat lungs, pulmonary fibrosis phenomenon could not be observed significantly.
Animals ; Bronchoalveolar Lavage Fluid ; chemistry ; Inhalation Exposure ; Lung ; drug effects ; metabolism ; pathology ; Male ; Pulmonary Fibrosis ; chemically induced ; metabolism ; pathology ; Rats ; Rats, Sprague-Dawley ; Silicon Dioxide ; administration & dosage ; toxicity

Result Analysis
Print
Save
E-mail