1.Prevalence and Risk Factors for Postoperative Neurological Complications in Spinal Deformity Surgery: A Systematic Review and Proportional Meta-Analysis
Yam Wa MAN ; Jedidiah Yui Shing LUI ; Chor Yin LAM ; Jason Pui Yin CHEUNG ; Prudence Wing Hang CHEUNG
Neurospine 2025;22(1):243-263
Objective:
To investigate the incidence of postoperative neurological complications among patients who underwent spinal deformity surgery and to determine the significant risk factors for postoperative neurological complications.
Methods:
Six databases PubMed, Web of Science, Scopus, MEDLINE, Embase, and Cochrane Library have been searched to identify observational studies from inception until January 2025. Inclusion criteria were patients aged ≥10 years with postoperative neurological complications after spinal deformity surgery. Stata/MP18.0 was used to conduct the meta-analysis in this review. The summary incidence estimates, proportion with 95% confidence intervals (CIs) and weights were pooled by the random-effects restricted maximum likelihood model.
Results:
The search strategy identified 53 articles with 40,958 patients for final review. Overall incidence of postoperative neurological complications was 7% (95% CI, 5.0%–9.0%; p < 0.001; I2 = 98.34%) in which incidence estimates for patients with adult spinal deformity and underwent 3-column spinal osteotomies were 12% (95% CI, 9%–16%; p < 0.001; I2 = 93.17%) and 18% (95% CI, 8%–31%; p < 0.001; I2 = 94.68%) respectively. Preoperative neurological deficit was the risk factor with highest overall odds ratio (OR, 2.86; 95% CI, 1.85–4.41; p = 0.01; I2 = 76.20%), followed by the presence of kyphosis (OR, 1.13; 95% CI, 0.75–1.70; p = 0.02; I2 = 81.80%) and age at surgery (OR, 1.04; 95% CI, 1.01–1.08; p = 0.04; I2 = 68.80%).
Conclusion
Preoperative neurological deficit, the presence of kyphosis and age at surgery were significant risk factors for postoperative neurological complications. Therefore, comprehensive preoperative assessment and surgical planning are crucial to minimize the risk of developing postoperative neurological complications or the deterioration of pre-existing neurologic deficits.
2.Lateral view fulcrum bending radiographs predict postoperative hypokyphosis after selective thoracic fusion in adolescent idiopathic scoliosis
Victoria Yuk Ting HUI ; Jason Pui Yin CHEUNG ; Prudence Wing Hang CHEUNG
Asian Spine Journal 2025;19(1):102-111
Methods:
Patients with Lenke 1 AIS undergoing posterior spinal fusion were included. Standing and fulcrum bending radiographs on the coronal and sagittal planes were analyzed at preoperative, immediate, and 2-year postoperative periods. The primary outcome was postoperative hypokyphosis (T5–12 thoracic kyphosis [TK] <20°). Risk factors for postoperative hypokyphosis were identified by multivariate logistic regression, and the optimal cutoff for significant risk factors was determined by receiver operating characteristic analysis.
Results:
In total, 156 patients were included in the analysis, of which 68 (43.6%) were hypokyphotic at 2-year follow-up. Low T5–12 TK on lateral view fulcrum bending films (immediate postoperative odds ratio [OR], 0.870; 95% confidence interval [CI], 0.826–0.917; 2-year postoperative OR, 0.916; 95% CI, 0.876–0.959; p<0.001) and high convex side implant density (2-year postoperative OR, 1.749; 95% CI, 1.056–2.897; p=0.03) were significant risk factors for postoperative hypokyphosis. Other baseline demographic and surgical factors did not affect postoperative kyphosis correction. The T5–12 TK cutoff on fulcrum bending for 2-year postoperative hypokyphosis was 12.45° (area under the curve, 0.773; 95% CI, 0.661–0.820).
Conclusions
Fulcrum bending radiography is useful in assessing coronal and sagittal flexibility for preoperative planning. In patients with T5–12 kyphosis <12.5° on lateral view fulcrum bending radiographs, Ponte osteotomies or releases, or a decrease in convex side implant density should be considered to improve kyphosis restoration and reduce the risk of 2-year postoperative hypokyphosis.
3.Prevalence and Risk Factors for Postoperative Neurological Complications in Spinal Deformity Surgery: A Systematic Review and Proportional Meta-Analysis
Yam Wa MAN ; Jedidiah Yui Shing LUI ; Chor Yin LAM ; Jason Pui Yin CHEUNG ; Prudence Wing Hang CHEUNG
Neurospine 2025;22(1):243-263
Objective:
To investigate the incidence of postoperative neurological complications among patients who underwent spinal deformity surgery and to determine the significant risk factors for postoperative neurological complications.
Methods:
Six databases PubMed, Web of Science, Scopus, MEDLINE, Embase, and Cochrane Library have been searched to identify observational studies from inception until January 2025. Inclusion criteria were patients aged ≥10 years with postoperative neurological complications after spinal deformity surgery. Stata/MP18.0 was used to conduct the meta-analysis in this review. The summary incidence estimates, proportion with 95% confidence intervals (CIs) and weights were pooled by the random-effects restricted maximum likelihood model.
Results:
The search strategy identified 53 articles with 40,958 patients for final review. Overall incidence of postoperative neurological complications was 7% (95% CI, 5.0%–9.0%; p < 0.001; I2 = 98.34%) in which incidence estimates for patients with adult spinal deformity and underwent 3-column spinal osteotomies were 12% (95% CI, 9%–16%; p < 0.001; I2 = 93.17%) and 18% (95% CI, 8%–31%; p < 0.001; I2 = 94.68%) respectively. Preoperative neurological deficit was the risk factor with highest overall odds ratio (OR, 2.86; 95% CI, 1.85–4.41; p = 0.01; I2 = 76.20%), followed by the presence of kyphosis (OR, 1.13; 95% CI, 0.75–1.70; p = 0.02; I2 = 81.80%) and age at surgery (OR, 1.04; 95% CI, 1.01–1.08; p = 0.04; I2 = 68.80%).
Conclusion
Preoperative neurological deficit, the presence of kyphosis and age at surgery were significant risk factors for postoperative neurological complications. Therefore, comprehensive preoperative assessment and surgical planning are crucial to minimize the risk of developing postoperative neurological complications or the deterioration of pre-existing neurologic deficits.
4.Prevalence and Risk Factors for Postoperative Neurological Complications in Spinal Deformity Surgery: A Systematic Review and Proportional Meta-Analysis
Yam Wa MAN ; Jedidiah Yui Shing LUI ; Chor Yin LAM ; Jason Pui Yin CHEUNG ; Prudence Wing Hang CHEUNG
Neurospine 2025;22(1):243-263
Objective:
To investigate the incidence of postoperative neurological complications among patients who underwent spinal deformity surgery and to determine the significant risk factors for postoperative neurological complications.
Methods:
Six databases PubMed, Web of Science, Scopus, MEDLINE, Embase, and Cochrane Library have been searched to identify observational studies from inception until January 2025. Inclusion criteria were patients aged ≥10 years with postoperative neurological complications after spinal deformity surgery. Stata/MP18.0 was used to conduct the meta-analysis in this review. The summary incidence estimates, proportion with 95% confidence intervals (CIs) and weights were pooled by the random-effects restricted maximum likelihood model.
Results:
The search strategy identified 53 articles with 40,958 patients for final review. Overall incidence of postoperative neurological complications was 7% (95% CI, 5.0%–9.0%; p < 0.001; I2 = 98.34%) in which incidence estimates for patients with adult spinal deformity and underwent 3-column spinal osteotomies were 12% (95% CI, 9%–16%; p < 0.001; I2 = 93.17%) and 18% (95% CI, 8%–31%; p < 0.001; I2 = 94.68%) respectively. Preoperative neurological deficit was the risk factor with highest overall odds ratio (OR, 2.86; 95% CI, 1.85–4.41; p = 0.01; I2 = 76.20%), followed by the presence of kyphosis (OR, 1.13; 95% CI, 0.75–1.70; p = 0.02; I2 = 81.80%) and age at surgery (OR, 1.04; 95% CI, 1.01–1.08; p = 0.04; I2 = 68.80%).
Conclusion
Preoperative neurological deficit, the presence of kyphosis and age at surgery were significant risk factors for postoperative neurological complications. Therefore, comprehensive preoperative assessment and surgical planning are crucial to minimize the risk of developing postoperative neurological complications or the deterioration of pre-existing neurologic deficits.
5.Lateral view fulcrum bending radiographs predict postoperative hypokyphosis after selective thoracic fusion in adolescent idiopathic scoliosis
Victoria Yuk Ting HUI ; Jason Pui Yin CHEUNG ; Prudence Wing Hang CHEUNG
Asian Spine Journal 2025;19(1):102-111
Methods:
Patients with Lenke 1 AIS undergoing posterior spinal fusion were included. Standing and fulcrum bending radiographs on the coronal and sagittal planes were analyzed at preoperative, immediate, and 2-year postoperative periods. The primary outcome was postoperative hypokyphosis (T5–12 thoracic kyphosis [TK] <20°). Risk factors for postoperative hypokyphosis were identified by multivariate logistic regression, and the optimal cutoff for significant risk factors was determined by receiver operating characteristic analysis.
Results:
In total, 156 patients were included in the analysis, of which 68 (43.6%) were hypokyphotic at 2-year follow-up. Low T5–12 TK on lateral view fulcrum bending films (immediate postoperative odds ratio [OR], 0.870; 95% confidence interval [CI], 0.826–0.917; 2-year postoperative OR, 0.916; 95% CI, 0.876–0.959; p<0.001) and high convex side implant density (2-year postoperative OR, 1.749; 95% CI, 1.056–2.897; p=0.03) were significant risk factors for postoperative hypokyphosis. Other baseline demographic and surgical factors did not affect postoperative kyphosis correction. The T5–12 TK cutoff on fulcrum bending for 2-year postoperative hypokyphosis was 12.45° (area under the curve, 0.773; 95% CI, 0.661–0.820).
Conclusions
Fulcrum bending radiography is useful in assessing coronal and sagittal flexibility for preoperative planning. In patients with T5–12 kyphosis <12.5° on lateral view fulcrum bending radiographs, Ponte osteotomies or releases, or a decrease in convex side implant density should be considered to improve kyphosis restoration and reduce the risk of 2-year postoperative hypokyphosis.
6.Prevalence and Risk Factors for Postoperative Neurological Complications in Spinal Deformity Surgery: A Systematic Review and Proportional Meta-Analysis
Yam Wa MAN ; Jedidiah Yui Shing LUI ; Chor Yin LAM ; Jason Pui Yin CHEUNG ; Prudence Wing Hang CHEUNG
Neurospine 2025;22(1):243-263
Objective:
To investigate the incidence of postoperative neurological complications among patients who underwent spinal deformity surgery and to determine the significant risk factors for postoperative neurological complications.
Methods:
Six databases PubMed, Web of Science, Scopus, MEDLINE, Embase, and Cochrane Library have been searched to identify observational studies from inception until January 2025. Inclusion criteria were patients aged ≥10 years with postoperative neurological complications after spinal deformity surgery. Stata/MP18.0 was used to conduct the meta-analysis in this review. The summary incidence estimates, proportion with 95% confidence intervals (CIs) and weights were pooled by the random-effects restricted maximum likelihood model.
Results:
The search strategy identified 53 articles with 40,958 patients for final review. Overall incidence of postoperative neurological complications was 7% (95% CI, 5.0%–9.0%; p < 0.001; I2 = 98.34%) in which incidence estimates for patients with adult spinal deformity and underwent 3-column spinal osteotomies were 12% (95% CI, 9%–16%; p < 0.001; I2 = 93.17%) and 18% (95% CI, 8%–31%; p < 0.001; I2 = 94.68%) respectively. Preoperative neurological deficit was the risk factor with highest overall odds ratio (OR, 2.86; 95% CI, 1.85–4.41; p = 0.01; I2 = 76.20%), followed by the presence of kyphosis (OR, 1.13; 95% CI, 0.75–1.70; p = 0.02; I2 = 81.80%) and age at surgery (OR, 1.04; 95% CI, 1.01–1.08; p = 0.04; I2 = 68.80%).
Conclusion
Preoperative neurological deficit, the presence of kyphosis and age at surgery were significant risk factors for postoperative neurological complications. Therefore, comprehensive preoperative assessment and surgical planning are crucial to minimize the risk of developing postoperative neurological complications or the deterioration of pre-existing neurologic deficits.
7.Lateral view fulcrum bending radiographs predict postoperative hypokyphosis after selective thoracic fusion in adolescent idiopathic scoliosis
Victoria Yuk Ting HUI ; Jason Pui Yin CHEUNG ; Prudence Wing Hang CHEUNG
Asian Spine Journal 2025;19(1):102-111
Methods:
Patients with Lenke 1 AIS undergoing posterior spinal fusion were included. Standing and fulcrum bending radiographs on the coronal and sagittal planes were analyzed at preoperative, immediate, and 2-year postoperative periods. The primary outcome was postoperative hypokyphosis (T5–12 thoracic kyphosis [TK] <20°). Risk factors for postoperative hypokyphosis were identified by multivariate logistic regression, and the optimal cutoff for significant risk factors was determined by receiver operating characteristic analysis.
Results:
In total, 156 patients were included in the analysis, of which 68 (43.6%) were hypokyphotic at 2-year follow-up. Low T5–12 TK on lateral view fulcrum bending films (immediate postoperative odds ratio [OR], 0.870; 95% confidence interval [CI], 0.826–0.917; 2-year postoperative OR, 0.916; 95% CI, 0.876–0.959; p<0.001) and high convex side implant density (2-year postoperative OR, 1.749; 95% CI, 1.056–2.897; p=0.03) were significant risk factors for postoperative hypokyphosis. Other baseline demographic and surgical factors did not affect postoperative kyphosis correction. The T5–12 TK cutoff on fulcrum bending for 2-year postoperative hypokyphosis was 12.45° (area under the curve, 0.773; 95% CI, 0.661–0.820).
Conclusions
Fulcrum bending radiography is useful in assessing coronal and sagittal flexibility for preoperative planning. In patients with T5–12 kyphosis <12.5° on lateral view fulcrum bending radiographs, Ponte osteotomies or releases, or a decrease in convex side implant density should be considered to improve kyphosis restoration and reduce the risk of 2-year postoperative hypokyphosis.
8.Prevalence and Risk Factors for Postoperative Neurological Complications in Spinal Deformity Surgery: A Systematic Review and Proportional Meta-Analysis
Yam Wa MAN ; Jedidiah Yui Shing LUI ; Chor Yin LAM ; Jason Pui Yin CHEUNG ; Prudence Wing Hang CHEUNG
Neurospine 2025;22(1):243-263
Objective:
To investigate the incidence of postoperative neurological complications among patients who underwent spinal deformity surgery and to determine the significant risk factors for postoperative neurological complications.
Methods:
Six databases PubMed, Web of Science, Scopus, MEDLINE, Embase, and Cochrane Library have been searched to identify observational studies from inception until January 2025. Inclusion criteria were patients aged ≥10 years with postoperative neurological complications after spinal deformity surgery. Stata/MP18.0 was used to conduct the meta-analysis in this review. The summary incidence estimates, proportion with 95% confidence intervals (CIs) and weights were pooled by the random-effects restricted maximum likelihood model.
Results:
The search strategy identified 53 articles with 40,958 patients for final review. Overall incidence of postoperative neurological complications was 7% (95% CI, 5.0%–9.0%; p < 0.001; I2 = 98.34%) in which incidence estimates for patients with adult spinal deformity and underwent 3-column spinal osteotomies were 12% (95% CI, 9%–16%; p < 0.001; I2 = 93.17%) and 18% (95% CI, 8%–31%; p < 0.001; I2 = 94.68%) respectively. Preoperative neurological deficit was the risk factor with highest overall odds ratio (OR, 2.86; 95% CI, 1.85–4.41; p = 0.01; I2 = 76.20%), followed by the presence of kyphosis (OR, 1.13; 95% CI, 0.75–1.70; p = 0.02; I2 = 81.80%) and age at surgery (OR, 1.04; 95% CI, 1.01–1.08; p = 0.04; I2 = 68.80%).
Conclusion
Preoperative neurological deficit, the presence of kyphosis and age at surgery were significant risk factors for postoperative neurological complications. Therefore, comprehensive preoperative assessment and surgical planning are crucial to minimize the risk of developing postoperative neurological complications or the deterioration of pre-existing neurologic deficits.
9.Genomics-driven derivatization of the bioactive fungal sesterterpenoid variecolin: Creation of an unnatural analogue with improved anticancer properties.
Dexiu YAN ; Jemma ARAKELYAN ; Teng WAN ; Ritvik RAINA ; Tsz Ki CHAN ; Dohyun AHN ; Vladimir KUSHNAREV ; Tsz Kiu CHEUNG ; Ho Ching CHAN ; Inseo CHOI ; Pui Yi HO ; Feijun HU ; Yujeong KIM ; Hill Lam LAU ; Ying Lo LAW ; Chi Seng LEUNG ; Chun Yin TONG ; Kai Kap WONG ; Wing Lam YIM ; Nikolay S KARNAUKHOV ; Richard Y C KONG ; Maria V BABAK ; Yudai MATSUDA
Acta Pharmaceutica Sinica B 2024;14(1):421-432
A biosynthetic gene cluster for the bioactive fungal sesterterpenoids variecolin ( 1) and variecolactone ( 2) was identified in Aspergillus aculeatus ATCC 16872. Heterologous production of 1 and 2 was achieved in Aspergillus oryzae by expressing the sesterterpene synthase VrcA and the cytochrome P450 VrcB. Intriguingly, the replacement of VrcB with homologous P450s from other fungal terpenoid pathways yielded three new variecolin analogues ( 5- 7). Analysis of the compounds' anticancer activity in vitro and in vivo revealed that although 5 and 1 had comparable activities, 5 was associated with significantly reduced toxic side effects in cancer-bearing mice, indicating its potentially broader therapeutic window. Our study describes the first tests of variecolin and its analogues in animals and demonstrates the utility of synthetic biology for creating molecules with improved biological activities.
10.Splenic Arterial Embolization for Trauma and Beyond: A Case Series
Chun Hin CHOY ; Yat Sing LEE ; Pui Lam CHEUNG ; Cheuk Him HO ; Jimmy Chi Wai SIU
Vascular Specialist International 2024;40(2):18-
Splenic artery embolization plays an important role in the management of various medical and surgical conditions that are non-traumatic in etiology, in addition to its well-established and widely discussed role in managing splenic trauma. In nontraumatic emergencies of catastrophic bleeding originating from the spleen or splenic artery, splenic artery embolization can be effective in achieving hemostasis as a definitive management, temporary stabilizing measure, or preoperative optimization technique. In addition to emergency clinical conditions, splenic artery embolization can be performed electively as an alternative to splenectomy for managing patients with hypersplenism.Herein, we report 6 cases of splenic artery embolization performed at our center to highlight its various indications. This article aims to demonstrate the role of splenic artery embolization in different clinical scenarios and the considerations behind the techniques employed through illustrative cases.

Result Analysis
Print
Save
E-mail