1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Trends in Metabolically Unhealthy Obesity by Age, Sex, Race/Ethnicity, and Income among United States Adults, 1999 to 2018
Wen ZENG ; Weijiao ZHOU ; Junlan PU ; Juan LI ; Xiao HU ; Yuanrong YAO ; Shaomei SHANG
Diabetes & Metabolism Journal 2025;49(3):475-484
Background:
This study aimed to estimate temporal trends in metabolically unhealthy obesity (MUO) among United States (US) adults by age, sex, race/ethnicity, and income from 1999 to 2018.
Methods:
We included 17,230 non-pregnant adults from a nationally representative cross-sectional study, the National Health and Nutrition Examination Survey (NHANES). MUO was defined as body mass index ≥30 kg/m2 with any metabolic disorders in blood pressure, blood glucose, and blood lipids. The age-adjusted percentage of MUO was calculated, and linear regression models estimated trends in MUO.
Results:
The weighted mean age of adults was 47.28 years; 51.02% were male, 74.64% were non-Hispanic White. The age-adjusted percentage of MUO continuously increased in adults across all subgroups during 1999–2018, although with different magnitudes (all P<0.05 for linear trend). Adults aged 45 to 64 years consistently had higher percentages of MUO from 1999–2000 (34.25%; 95% confidence interval [CI], 25.85% to 42.66%) to 2017–2018 (42.03%; 95% CI, 35.09% to 48.97%) than the other two age subgroups (P<0.05 for group differences). The age-adjusted percentage of MUO was the highest among non-Hispanic Blacks while the lowest among non-Hispanic Whites in most cycles. Adults with high-income levels generally had lower MUO percentages from 1999–2000 (22.63%; 95% CI, 17.00% to 28.26%) to 2017–2018 (32.36%; 95% CI, 23.87% to 40.85%) compared with the other two subgroups.
Conclusion
This study detected a continuous linear increasing trend in MUO among US adults from 1999 to 2018. The persistence of disparities by age, race/ethnicity, and income is a cause for concern. This calls for implementing evidence-based, structural, and effective MUO prevention programs.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Trends in Metabolically Unhealthy Obesity by Age, Sex, Race/Ethnicity, and Income among United States Adults, 1999 to 2018
Wen ZENG ; Weijiao ZHOU ; Junlan PU ; Juan LI ; Xiao HU ; Yuanrong YAO ; Shaomei SHANG
Diabetes & Metabolism Journal 2025;49(3):475-484
Background:
This study aimed to estimate temporal trends in metabolically unhealthy obesity (MUO) among United States (US) adults by age, sex, race/ethnicity, and income from 1999 to 2018.
Methods:
We included 17,230 non-pregnant adults from a nationally representative cross-sectional study, the National Health and Nutrition Examination Survey (NHANES). MUO was defined as body mass index ≥30 kg/m2 with any metabolic disorders in blood pressure, blood glucose, and blood lipids. The age-adjusted percentage of MUO was calculated, and linear regression models estimated trends in MUO.
Results:
The weighted mean age of adults was 47.28 years; 51.02% were male, 74.64% were non-Hispanic White. The age-adjusted percentage of MUO continuously increased in adults across all subgroups during 1999–2018, although with different magnitudes (all P<0.05 for linear trend). Adults aged 45 to 64 years consistently had higher percentages of MUO from 1999–2000 (34.25%; 95% confidence interval [CI], 25.85% to 42.66%) to 2017–2018 (42.03%; 95% CI, 35.09% to 48.97%) than the other two age subgroups (P<0.05 for group differences). The age-adjusted percentage of MUO was the highest among non-Hispanic Blacks while the lowest among non-Hispanic Whites in most cycles. Adults with high-income levels generally had lower MUO percentages from 1999–2000 (22.63%; 95% CI, 17.00% to 28.26%) to 2017–2018 (32.36%; 95% CI, 23.87% to 40.85%) compared with the other two subgroups.
Conclusion
This study detected a continuous linear increasing trend in MUO among US adults from 1999 to 2018. The persistence of disparities by age, race/ethnicity, and income is a cause for concern. This calls for implementing evidence-based, structural, and effective MUO prevention programs.
6.Trends in Metabolically Unhealthy Obesity by Age, Sex, Race/Ethnicity, and Income among United States Adults, 1999 to 2018
Wen ZENG ; Weijiao ZHOU ; Junlan PU ; Juan LI ; Xiao HU ; Yuanrong YAO ; Shaomei SHANG
Diabetes & Metabolism Journal 2025;49(3):475-484
Background:
This study aimed to estimate temporal trends in metabolically unhealthy obesity (MUO) among United States (US) adults by age, sex, race/ethnicity, and income from 1999 to 2018.
Methods:
We included 17,230 non-pregnant adults from a nationally representative cross-sectional study, the National Health and Nutrition Examination Survey (NHANES). MUO was defined as body mass index ≥30 kg/m2 with any metabolic disorders in blood pressure, blood glucose, and blood lipids. The age-adjusted percentage of MUO was calculated, and linear regression models estimated trends in MUO.
Results:
The weighted mean age of adults was 47.28 years; 51.02% were male, 74.64% were non-Hispanic White. The age-adjusted percentage of MUO continuously increased in adults across all subgroups during 1999–2018, although with different magnitudes (all P<0.05 for linear trend). Adults aged 45 to 64 years consistently had higher percentages of MUO from 1999–2000 (34.25%; 95% confidence interval [CI], 25.85% to 42.66%) to 2017–2018 (42.03%; 95% CI, 35.09% to 48.97%) than the other two age subgroups (P<0.05 for group differences). The age-adjusted percentage of MUO was the highest among non-Hispanic Blacks while the lowest among non-Hispanic Whites in most cycles. Adults with high-income levels generally had lower MUO percentages from 1999–2000 (22.63%; 95% CI, 17.00% to 28.26%) to 2017–2018 (32.36%; 95% CI, 23.87% to 40.85%) compared with the other two subgroups.
Conclusion
This study detected a continuous linear increasing trend in MUO among US adults from 1999 to 2018. The persistence of disparities by age, race/ethnicity, and income is a cause for concern. This calls for implementing evidence-based, structural, and effective MUO prevention programs.
7.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
8.Trends in Metabolically Unhealthy Obesity by Age, Sex, Race/Ethnicity, and Income among United States Adults, 1999 to 2018
Wen ZENG ; Weijiao ZHOU ; Junlan PU ; Juan LI ; Xiao HU ; Yuanrong YAO ; Shaomei SHANG
Diabetes & Metabolism Journal 2025;49(3):475-484
Background:
This study aimed to estimate temporal trends in metabolically unhealthy obesity (MUO) among United States (US) adults by age, sex, race/ethnicity, and income from 1999 to 2018.
Methods:
We included 17,230 non-pregnant adults from a nationally representative cross-sectional study, the National Health and Nutrition Examination Survey (NHANES). MUO was defined as body mass index ≥30 kg/m2 with any metabolic disorders in blood pressure, blood glucose, and blood lipids. The age-adjusted percentage of MUO was calculated, and linear regression models estimated trends in MUO.
Results:
The weighted mean age of adults was 47.28 years; 51.02% were male, 74.64% were non-Hispanic White. The age-adjusted percentage of MUO continuously increased in adults across all subgroups during 1999–2018, although with different magnitudes (all P<0.05 for linear trend). Adults aged 45 to 64 years consistently had higher percentages of MUO from 1999–2000 (34.25%; 95% confidence interval [CI], 25.85% to 42.66%) to 2017–2018 (42.03%; 95% CI, 35.09% to 48.97%) than the other two age subgroups (P<0.05 for group differences). The age-adjusted percentage of MUO was the highest among non-Hispanic Blacks while the lowest among non-Hispanic Whites in most cycles. Adults with high-income levels generally had lower MUO percentages from 1999–2000 (22.63%; 95% CI, 17.00% to 28.26%) to 2017–2018 (32.36%; 95% CI, 23.87% to 40.85%) compared with the other two subgroups.
Conclusion
This study detected a continuous linear increasing trend in MUO among US adults from 1999 to 2018. The persistence of disparities by age, race/ethnicity, and income is a cause for concern. This calls for implementing evidence-based, structural, and effective MUO prevention programs.
9.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
10.Influences of Lycium barbarum polysaccharide on apoptosis of corneal epithelial cells induced by hypertonicity through regulation of AMPK/ULK1 autophagy pathway
Wen-Wen TIAN ; Zhi-Xue DUAN ; Jian-Zhong PU ; Jing WANG ; Peng LÜ
The Chinese Journal of Clinical Pharmacology 2024;40(1):42-46
Objective To investigate the influences of Lycium barbarum polysaccharide on apoptosis of corneal epithelial cells induced by hypertonicity through regulating adenosine monophosphate activated protein kinase(AMPK)/uncoordinated 51-like kinase 1(ULK1)autophagy pathway.Methods The ophthalmoxerosis cell model was established by osmotic pressure of 500 mOsm·L-1 on corneal epithelial cells.They were divided into model group,positive control group(0.3%sodium hyaluronate eye drops),inhibitor group(1 mg·mL-1 Lycium barbarum polysaccharide+10 μmol·L-1compound C),experimental-L,-H groups(0.5,1.0 mg·mL 1 Lycium barbarum polysaccharide),and normal cultured CRL-11135 cells were taken as blank group(no treatment was performed).Cell apoptosis was detected by flow cytometry.Autophagy was detected by MDC staining.Western blot was used to detect the expressions of p-AMPK/AMPK and p-ULK1/ULK1.Results The apoptosis rates of experimental-L,experimental-H,positive control,inhibitor,model and blank groups were(26.47±2.13)%,(13.68±2.21)%,(12.54±2.16)%,(18.73±2.12)%,(37.56±3.25)%and(6.35±2.14)%;the relative contents of autophagosomes were(59.63±8.14)%,(89.89±9.04)%,(90.31±9.13)%,(62.75±7.26)%,(43.11±6.45)%and(100.00±0.00)%;p-AMPK/AMPK were 0.45±0.07,0.64±0.08,0.66±0.06,0.53±0.04,0.34±0.05 and 0.87±0.06;p-ULKl/ULKl were 0.54±0.06,0.75±0.05,0.77±0.03,0.65±0.04,0.46±0.04 and 0.92±0.08,respectively.The above indexes in experimental-L,-H groups and positive control group were significantly different from those in model group(all P<0.05);the above indexes in inhibitor group were significantly different from those in experimental-H group(all P<0.05).Conclusion Lycium barbarum polysaccharide can inhibit the apoptosis of corneal epithelial cells induced by hypertonicity by activating the AMPK/ULK1 autophagy pathway.

Result Analysis
Print
Save
E-mail