1.Exploration on Mechanism of Topical Treatment of Allergic Contact Dermatitis in Mice with Portulacae Herba Based on Nrf2/HO-1/NF-κB Signaling Pathway
Xiaoxue WANG ; Guanwei FAN ; Xiang PU ; Zhongzhao ZHANG ; Xia CHEN ; Ying TANG ; Nana WU ; Jiangli LUO ; Xiangyan KONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):115-123
ObjectiveTo investigate the mechanism of topical treatment of allergic contact dermatitis (ACD) mice with Portulacae Herba based on the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/nuclear factor-κB (NF-κB) signaling pathway. MethodsA total of 70 6-week-old specific pathogen free (SPF) female Kunming mice were adaptively fed for 1 week and randomly divided into blank group, model group, compound dexamethasone acetate cream group (2.075×10-2 g·g-1), blank matrix cream group, low-dose Portulacae Herba cream group (0.1 g·g-1), high-dose Portulacae Herba cream group (0.2 g·g-1), and Portulacae Herba + inhibitor group (0.2 g·g-1 + 30 mg·kg-1 ML385), with 10 mice in each group. One day before the experiment, the mice were shaved on the neck and back. Except for the blank group, the mice in the other groups were treated with 2,4-dinitrochlorobenzene (DNCB) to establish an ACD model. After respective administration, the skin lesion of the mice was scored, and the histopathological changes of the skin were stained with hematoxylin-eosin (HE). Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), reactive oxygen species (ROS), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) in serum of mice. The expression of Nrf2/HO-1/NF-κB signaling pathway-related proteins in mouse skin tissue was detected by immunohistochemistry (IHC), Western blot, and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the blank group, the mice in the model group had an increased skin lesion score (P<0.01), severe pathological damage to skin tissue, increased content of IL-1β, IL-6, ROS, and MDA in their serum (P<0.01), and decreased content of SOD (P<0.01). In addition, the mRNA and protein expression levels of Nrf2, HO-1, and nuclear factor-κB inhibitor α (IκBα) in skin tissue were up-regulated (P<0.01), while the protein expression levels of phosphorylated (p)-IκBα and p-NF-κB p65 and the mRNA expression of NF-κB p65 were down-regulated (P<0.01). Compared with the model group and the blank matrix cream group, the mice treated with Portulacae Herba had a decreased skin lesion score (P<0.01), reduced pathological damage to skin tissue, decreased content of IL-1β, IL-6, ROS, and MDA in their serum (P<0.01), and increased content of SOD (P<0.01). Additionally, the mRNA and protein expression levels of Nrf2, HO-1, and IκBα in skin tissue were down-regulated (P<0.05,P<0.01), and the protein expression levels of p-IκBα and p-NF-κB p65 and the mRNA expression of NF-κB p65 were up-regulated (P<0.05,P<0.01). Compared with the Portulacae Herba + inhibitor group, the high-dose Portulacae Herba cream group had a decreased skin lesion score (P<0.01), alleviated pathological damage to skin tissue, decreased content of IL-1β, IL-6, ROS, and MDA in the serum of mice (P<0.05,P<0.01), and increased content of SOD (P<0.01). The protein expression levels of Nrf2, HO-1, and IκBα and the mRNA expression of Nrf2 and HO-1 in skin tissue were up-regulated (P<0.05,P<0.01), and the protein expression levels of p-IκBα and p-NF-κB p65 and the mRNA expression of NF-κB p65 were down-regulated (P<0.05). ConclusionPortulacae Herba can improve DNCB-induced ACD skin damage in mice by regulating the Nrf2/HO-1/NF-κB signaling pathway.
2.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
3.The risk prediction models for anastomotic leakage after esophagectomy: A systematic review and meta-analysis
Yushuang SU ; Yan LI ; Hong GAO ; Zaichun PU ; Juan CHEN ; Mengting LIU ; Yaxie HE ; Bin HE ; Qin YANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):230-236
Objective To systematically evaluate the risk prediction models for anastomotic leakage (AL) in patients with esophageal cancer after surgery. Methods A computer-based search of PubMed, EMbase, Web of Science, Cochrane Library, Chinese Medical Journal Full-text Database, VIP, Wanfang, SinoMed and CNKI was conducted to collect studies on postoperative AL risk prediction model for esophageal cancer from their inception to October 1st, 2023. PROBAST tool was employed to evaluate the bias risk and applicability of the model, and Stata 15 software was utilized for meta-analysis. Results A total of 19 literatures were included covering 25 AL risk prediction models and 7373 patients. The area under the receiver operating characteristic curve (AUC) was 0.670-0.960. Among them, 23 prediction models had a good prediction performance (AUC>0.7); 13 models were tested for calibration of the model; 1 model was externally validated, and 10 models were internally validated. Meta-analysis showed that hypoproteinemia (OR=9.362), postoperative pulmonary complications (OR=7.427), poor incision healing (OR=5.330), anastomosis type (OR=2.965), preoperative history of thoracoabdominal surgery (OR=3.181), preoperative diabetes mellitus (OR=2.445), preoperative cardiovascular disease (OR=3.260), preoperative neoadjuvant therapy (OR=2.977), preoperative respiratory disease (OR=4.744), surgery method (OR=4.312), American Society of Anesthesiologists score (OR=2.424) were predictors for AL after esophageal cancer surgery. Conclusion At present, the prediction model of AL risk in patients with esophageal cancer after surgery is in the development stage, and the overall research quality needs to be improved.
4.Discussion on Technical Characteristics of National Drug Standards for Traditional Chinese Medicine Dispensing Granules
Shengjun CHEN ; Song LI ; Kejia GUO ; Yuntian ZHANG ; Haiqin ZHOU ; Xianglan PU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):256-264
On the premise of respecting the objective law of the occurrence and development of traditional Chinese medicine(TCM) dispensing granules, relevant national departments have gradually formed the research and formulation ideas of national drug standards for dispensing granules based on the experiences and lessons learned in the development process of quality standards, as well as the formation mechanism of national standards for dispensing granules. This has certain reference significance for the formulation path of TCM quality standards. Combined with the general situation of the published standards and specific cases, the research concepts of the national standards for dispensing granules were analyzed and summarized in this paper, and the analysis of the technical characteristics of the issued national standards was focused, including the introduction of standard decoction, the overall quality control of TCM, the whole process quality control and other research ideas. At the same time, it summarized the industry common problems in the research and development process of national standards for dispensing granules, such as the source and process control of medicinal materials, and strived to solve them together, encouraging the demonstration and application of new technological means in the field of TCM dispensing granules. Finally, based on the literature analysis, the shortcomings of the current national standards were discussed, and relevant suggestions were put forward to further improve the national standards for dispensing granules. Through the overall analysis, it is helpful to comprehensively understand the technical characteristics of the national standards for TCM dispensing granules, and provide reference for the scientific exploration and practice of quality control methods for TCM.
5.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
6.Mendelian randomization study on the association between telomere length and 10 common musculoskeletal diseases
Weidong LUO ; Bin PU ; Peng GU ; Feng HUANG ; Xiaohui ZHENG ; Fuhong CHEN
Chinese Journal of Tissue Engineering Research 2025;29(3):654-660
BACKGROUND:Multiple observational studies have suggested a potential association between telomere length and musculoskeletal diseases.However,the underlying mechanisms remain unclear. OBJECTIVE:To investigate the genetic causal relationship between telomere length and musculoskeletal diseases using two-sample Mendelian randomization analysis. METHODS:Genome-wide association study summary data of telomere length were obtained from the UK Biobank.Genome-wide association study summary data of 10 common musculoskeletal diseases(osteonecrosis,osteomyelitis,osteoporosis,rheumatoid arthritis,low back pain,spinal stenosis,gout,scapulohumeral periarthritis,ankylosing spondylitis and deep venous thrombosis of lower limbs)were obtained from the FinnGen consortium.Inverse variance weighting,Mendelian randomization-Egger and weighted median methods were used to evaluate the causal relationship between telomere length and 10 musculoskeletal diseases.Inverse variance weighting was the primary Mendelian randomization analysis method,and sensitivity analysis was performed to explore the robustness of the results. RESULTS AND CONCLUSION:(1)Inverse variance-weighted results indicated a negative causal relationship between genetically predicted telomere length and rheumatoid arthritis(odds ratio=0.78,95%confidence interval:0.64-0.95,P=0.015)and osteonecrosis(odds ratio=0.56,95%confidence interval:0.36-0.90,P=0.016).No causal relationship was found between telomere length and the other eight musculoskeletal diseases(all P>0.05).(2)Sensitivity analysis affirmed the robustness of these causal relationships,and Mendelian randomization-Egger intercept analysis found no evidence of potential horizontal pleiotropy(all P>0.05).(3)This Mendelian randomized study supports that telomere length has protective effects against rheumatoid arthritis and osteonecrosis.However,more basic and clinical research will be needed to support our findings in the future.
7.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
8.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
9.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
10.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.

Result Analysis
Print
Save
E-mail