1.Detection of Pseudorabies Virus Antibodies in Human Encephalitis Cases.
Xiang Dong LI ; Shi Hong FU ; Ling Yan CHEN ; Fan LI ; Jun Hua DENG ; Xuan Cheng LU ; Huan Yu WANG ; Ke Gong TIAN
Biomedical and Environmental Sciences 2020;33(6):444-447
Pseudorabies virus (PRV), a veterinary pathogen that infects domestic animals as well as wild animals such as wild boar and feral swine, was recently reported to infect human and led to endophthalmitis and encephalitis. A retrospective seroepidemiologic survey was conducted using 1,335 serum samples collected from patients with encephalitis and ELISA positive rates were 12.16%, 14.25%, and 6.52% in 2012, 2013, and 2017, respectively. The virus neutralizing antibody titers of positive samples correlated well with ELISA results. The pseudorabies virus antibody positive rate of patients with encephalitis were higher than that of healthy people in 2017. The above results suggest that some undefined human encephalitis cases may be caused by PRV infection.
Adult
;
Animals
;
Antibodies, Viral
;
blood
;
China
;
Encephalitis
;
immunology
;
virology
;
Enzyme-Linked Immunosorbent Assay
;
Female
;
Herpesvirus 1, Suid
;
immunology
;
Humans
;
Male
;
Middle Aged
;
Prevalence
;
Pseudorabies
;
blood
;
immunology
;
virology
;
Retrospective Studies
;
Seroepidemiologic Studies
;
Young Adult
2.Functional analysis of prv-miR-LLT11a encoded by pseudorabies virus
Huimin LIU ; Li YANG ; Zhibin SHI ; Ruiqi LV ; Xia YANG ; Chuanqing WANG ; Lu CHEN ; Hongtao CHANG
Journal of Veterinary Science 2019;20(6):e68-
Viral-encoded microRNAs (miRNAs) have vital roles in the regulation of virus replications and host immune responses. The results of previous studies have indicated that miRNA clusters are involved in the replication and virulence of the pseudorabies virus (PRV), which may potentially lead to immune escape or facilitation of PRV replication. This study's previous research revealed that prv-miR-LLT11a was differentially expressed during PRV infection. The present study's results have demonstrated that prv-miR-LLT11a could significantly inhibit PRV replication. It was further determined that SLA-1 was the target gene of prv-miR-LLT11a, and simultaneously, that overexpression of prv-miR-LLT11a could downregulate the mRNA and protein levels of SLA-1 in a dose-independent manner. Furthermore, the present study also observed that prv-miR-LLT11a can downregulate TAP1 expression. Our findings provide a better understanding of the molecular mechanism involved in the effects of prv-miR-LLT11a on SLA-1 and TAP1 as well as its involvement in immune system evasion of PRV.
Herpesvirus 1, Suid
;
Immune System
;
MicroRNAs
;
Pseudorabies
;
RNA, Messenger
;
United Nations
;
Virulence
;
Virus Replication
3.An oral Aujeszky's disease vaccine (YS-400) induces neutralizing antibody in pigs.
Dong Kun YANG ; Ha Hyun KIM ; Sung Suk CHOI ; Bang Hun HYUN ; Jae Young SONG
Clinical and Experimental Vaccine Research 2016;5(2):132-137
PURPOSE: Aujeszky's disease (AD) is an economically important disease affecting both wild and domestic pigs of the species Sus scrofa. A previous study yielded serological evidence of AD in Korean wild boars, which could spread AD to other animals. A new Aujeszky's disease virus (ADV) bait vaccine is required to prevent AD outbreaks in swine. In the present study, we investigated the safety and immunogenicity of a gE-deleted marker vaccine, strain YS-400, in young domestic pigs. MATERIALS AND METHODS: The YS-400 strain was propagated in Vero cells, and the trial ADV bait vaccine (a vaccine blister in a matrix including an attractant) was prepared. Pigs were orally immunized with the vaccine (2 mL, 10(7.5) TCID(50)/mL) delivered using a syringe or in the bait vaccine. The animals were observed for 9 weeks after vaccination, and immunogenicity was assessed using a virus neutralization (VN) test and enzyme linked immunosorbent assay. RESULTS: The YS-400 strain was non-pathogenic to pigs when given orally and induced high VN titers (1:32-1:128) 6 weeks post-administration. Of the pigs given the ADV bait vaccine twice or three times, 40% were seropositive by 2 weeks, and 100% were seropositive by 7 weeks after the first dose. Pigs that consumed the AD bait vaccine three times developed VN titers that were slightly higher than those of pigs given the vaccine twice. CONCLUSION: Domestic pigs given the trial ADV bait vaccine exhibited no adverse effects and developed high VN titers against ADV, indicating that the YS-400 strain is safe and can prevent ADV infection in domestic pigs.
Animals
;
Antibodies, Neutralizing*
;
Blister
;
Disease Outbreaks
;
Enzyme-Linked Immunosorbent Assay
;
Herpesvirus 1, Suid
;
Pseudorabies*
;
Sus scrofa
;
Swine*
;
Syringes
;
Vaccination
;
Vero Cells
4.Molecular characterization and phylogenetic analysis of pseudorabies virus variants isolated from Guangdong province of southern China during 2013–2014.
Jindai FAN ; Xiduo ZENG ; Guanqun ZHANG ; Qiwen WU ; Jianqiang NIU ; Baoli SUN ; Qingmei XIE ; Jingyun MA
Journal of Veterinary Science 2016;17(3):369-375
Outbreaks of pseudorabies (PR) have occurred in southern China since late 2011, resulting in significant economic impacts on the swine industry. To identify the cause of PR outbreaks, especially among vaccinated pigs, 11 pseudorabies virus (PRV) field strains were isolated from Guangdong province during 2013–2014. Their major viral genes (gE, TK, gI, PK, gD, 11K, and 28K) were analyzed in this study. Insertions or deletions were observed in gD, gE, gI and PK genes compared with other PRV isolates from all over the world. Furthermore, sequence alignment showed that insertions in gD and gE were unique molecular characteristics of the new prevalent PRV strains in China. Phylogenetic analysis showed that our isolates were clustered in an independent branch together with other strains isolated from China in recent years, and that they showed a closer genetic relationship with earlier isolates from Asia. Our results suggest that these isolates are novel PRV variants with unique molecular signatures.
Asia
;
China*
;
Disease Outbreaks
;
Genes, Viral
;
Herpesvirus 1, Suid*
;
Pseudorabies*
;
Sequence Alignment
;
Swine
5.Seroprevalence and associated risk factors of pseudorabies in Shandong province of China.
Dongfang HU ; Lin LV ; Zhendong ZHANG ; Yihong XIAO ; Sidang LIU
Journal of Veterinary Science 2016;17(3):361-368
A cross-sectional serological study was conducted in Shandong province of China to determine the seroprevalence and risk factors associated with seropositivity due to pseudorabies virus (PRV) infection in small- and medium-sized farrow-to-finish herds following outbreaks of variant PRV strains. A total of 6,035 blood samples from 224 randomly selected herds were screened. The results showed that 25.0% of the herds and 56.7% of the serum samples were seropositive for field strains of PRV. Herds consisting of 50–100 breeding sows had higher herd seroprevalence and serum sample seroprevalence than larger herds. Both the highest herd seroprevalence and highest serum sample seroprevalence were observed in western Shandong, followed northern Shandong. Based on univariate analysis, the following risk factors were utilized in subsequent multivariable logistic regression analysis: region, herd size, weight of purchased gilts, and all-in/all-out practice. Upon multivariate analysis, region, herd size, weight of purchased gilts and all-in/all-out practice were significantly associated with PRV herd seropositivity. These findings indicate that we are facing a serious situation in the prevention and control of pseudorabies. The results could help predict the next outbreak and set out control measures.
Breeding
;
China*
;
Disease Outbreaks
;
Herpesvirus 1, Suid
;
Logistic Models
;
Multivariate Analysis
;
Pseudorabies*
;
Risk Factors*
;
Seroepidemiologic Studies*
6.Innate Immune Evasion Mechanisms of Pseudorabies Virus.
Yaozong LIU ; Ping RUI ; Rui MA ; Zengjun MA
Chinese Journal of Virology 2015;31(6):698-703
Pseudorabies is an economically important disease in a variety ot animals caused by pseudorabies virus. Since 2011, pseudorabies outbreaks occurred in many regions of China. Related researches on this virus become a hot topic in virology and veterinary. One of the difficulties for pseudorabies prevention and control is innate immune evasion. Explorations on this issue are conducive to the development of vaccine and drugs. Therefore, this review summarized the recent research progress on the mechanisms of pseudorabies virus innate immune evasion. Theoretical direction was provided on effetive prevention and control of pseudorabies owing to this review.
Animals
;
Herpesvirus 1, Suid
;
genetics
;
immunology
;
Humans
;
Immune Evasion
;
Immunity, Innate
;
Pseudorabies
;
immunology
;
virology
7.Seroepidemiological Survey of Aujeszky's Disease Virus in Wild Boar (Sus scrofa) and Raccoon Dogs (Nyctereutes procyonoides koreensis) in Korea.
Dong Kun YANG ; Jin Ju NAH ; Ha Hyun KIM ; Sung Suk CHOI ; Dong Jun AN ; Jong Taek KIM ; Kyoung Ae PARK ; Jae Young SONG
Journal of Bacteriology and Virology 2014;44(4):336-341
Aujeszky's disease caused by Aujeszky's disease virus (ADV) is one of the most important diseases in the pig industry. In this study, we conducted a seroepidemiological survey of ADV in wild boars and raccoon dogs in South Korea. In total, 217 wild boar sera collected between March and August 2013, and 96 raccoon dogs between 2011 and 2012 were screened for the presence of antibodies against ADV. The sero-positive rates in wild boars and raccoon dogs tested for ADV were found to be 3.55% (8/225) and 0% (0/96), respectively. The presence of virus neutralization antibody titer against ADV means that small number of wild boars was infected with ADV and AD may be circulated continuously in Korean wild boar populations, and that wild boars may act as a potential reservoir of ADV. Therefore, to achieve the declaration of AD free, effective preventive measures to block transmission of AD should be taken to the wild boars.
Antibodies
;
Herpesvirus 1, Suid*
;
Korea
;
Pseudorabies
;
Raccoon Dogs*
;
Sus scrofa*
8.Investigation of etiology of massive infection with porcine pseudorabies virus in Henan and neighboring Provinces.
Hong-Tao CHANG ; Hui-Min LIU ; Zhan-Da GUO ; Ji-Mei DU ; Jun ZHAO ; Lu CHEN ; Xia YANG ; Xin-Wei WANG ; Hui-Xia YAO ; Chuan-Qing WANG
Chinese Journal of Virology 2014;30(4):441-449
In early 2011, the serious outbreak of porcine pseudorabies virus (PRV) infection suddenly recurred in Henan and neighboring Provinces. To investigate the etiology of massive infection with PRV, 16 800 serum samples, 905 porcine epidemic diarrhea virus (PEDV) back-feeding tissues, and 56 PR gene deleted live vaccines were colleted from January 2011 to May 2013 to detect PRV field infection using a PRV gE antibody test kit. The gE and TK genes of 11 new epidemic PRV strains were sequenced by PCR, and their molecular characteristics were analyzed. Moreover, virus titer determination, protective test against PRV, and vaccine potency testing were performed. The results showed that the detection rate of PRV field infection-positive pig farms was 68.06%, and the overall positive rate of PRV field infection in serum was 38.47%; the positive rates in breeding sows, breeding boars, reserve pigs, and commercial pigs were 40.12%, 30.88%, 54.67%, and 26.52%, respectively. The new epidemic strains were in the same evolutionary branch and belonged to the virulent strain group. Compared with the classical PRV strain, the virulence of new epidemic strains changed a little. The length of gE gene was 1 787 bp, and the length of TK gene was 963 bp. The nucleotide homologies of gE and TK genes to Chinese reference strains were 98.2%-99.8% and 98.90%-99.6%, respectively, and the amino acid homologies were 97.1%-99.8% and 97.5%-99.4%, respectively. Commercial vaccine had a 100% protective effect against the new epidemic strains. The positive rate of PRV field infection was 0% in vaccine and 40.44% in back-feeding tissues. The results confirmed that PRV field infection rates were rising sharply among pigs in Henan and neighboring Provinces after 2011. The main virulence genes of new epidemic PRV strains did not change significantly over the years. PR gene deleted live vaccines had no PRV field infection and could completely resist the attack of new strains. The virus carriage of breeding boars and reserve pigs and the serious PRV field infection in PEDV back-feeding tissues were the main causative factors for massive infection with PRV and epidemic outbreak in Henan and neighboring Provinces from 2011 to 2013.
Amino Acid Sequence
;
Animal Feed
;
analysis
;
virology
;
Animals
;
China
;
epidemiology
;
Epidemics
;
Female
;
Herpesvirus 1, Suid
;
chemistry
;
classification
;
genetics
;
isolation & purification
;
Male
;
Molecular Sequence Data
;
Phylogeny
;
Pseudorabies
;
epidemiology
;
virology
;
Sequence Alignment
;
Sequence Homology, Amino Acid
;
Sus scrofa
;
Swine
;
Swine Diseases
;
epidemiology
;
virology
;
Viral Proteins
;
chemistry
;
genetics
9.Identification of nuclear localization signals of pseudorabies virus gene UL49.
Chinese Journal of Virology 2014;30(4):436-440
Tegument protein VP22 is encoded by Pseudorabies Virus (PRV) UL49. To identify the nuclear localization signals of UL49, it is necessary to determine the transport mechanism and biological functions of the VP22 protein. In this study, we identified two nuclear localization signals from UL49, NLS1 (5RKTRVA ADETASGARRR21) and NLS2 (241PGRKGKV247). The functional nuclear localization signal (NLS) of UL49 was identified by constructing truncated or site-specific UL49 mutants. The deletion of both NLS1 and NLS2 abrogated UL49 nuclear accumulation, whereas the deletion of NLS1 or NLS2 did not. Therefore, both NLS1 and NLS2 are critical for the nuclear localization of UL49. And our resuts showed that NLS2 is more important in this regard.
Animals
;
COS Cells
;
Cell Nucleus
;
metabolism
;
virology
;
Cercopithecus aethiops
;
Herpesvirus 1, Suid
;
chemistry
;
genetics
;
metabolism
;
Humans
;
Nuclear Localization Signals
;
Protein Transport
;
Pseudorabies
;
metabolism
;
virology
;
Viral Structural Proteins
;
chemistry
;
genetics
;
metabolism
10.Studies on neuronal tracing with pseudorabies virus.
Bi LI ; Ling ZHU ; Yuan-Cheng ZHOU ; Wan-Zhu GUO ; Zhi-Wen XU
Chinese Journal of Virology 2014;30(3):333-337
With its abilities of trans-synaptic tracing and self-replication and wide host range, pseudorabies virus (PRV) has been applied in the field of neuroanatomy since the 1970s. Four decades of PRV application have made many advances in researches on neuronal tracing with PRV. Mechanism studies focused on investigating infection of primary neurons and tracing direction in secondary neurons, while application studies focused on development of new pathological strains and innovation of tracing techniques. To date, the mechanism and application of viral tracing are not completely figured out yet. Integration of molecular biology technology will improve the efficiency in related researches.
Animals
;
Cell Tracking
;
Herpesvirus 1, Suid
;
genetics
;
physiology
;
Humans
;
Neurons
;
virology
;
Pseudorabies
;
virology

Result Analysis
Print
Save
E-mail