1.Schistosoma infection, KRAS mutation status, and prognosis of colorectal cancer.
Xinyi LI ; Hongli LIU ; Bo HUANG ; Ming YANG ; Jun FAN ; Jiwei ZHANG ; Mixia WENG ; Zhecheng YAN ; Li LIU ; Kailin CAI ; Xiu NIE ; Xiaona CHANG
Chinese Medical Journal 2024;137(2):235-237
2.Study on the Role and Mechanism of METTL3 Mediating the Up-regulation of m6A Modified Long Non-coding RNA THAP7-AS1 in Promoting the Occurrence of Lung Cancer.
Yu ZHANG ; Yanhong WANG ; Mei LIU
Chinese Journal of Lung Cancer 2024;26(12):919-933
BACKGROUND:
Lung cancer is a major threat to human health. The molecular mechanisms related to the occurrence and development of lung cancer are complex and poorly known. Exploring molecular markers related to the development of lung cancer is helpful to improve the effect of early diagnosis and treatment. Long non-coding RNA (lncRNA) THAP7-AS1 is known to be highly expressed in gastric cancer, but has been less studied in other cancers. The aim of the study is to explore the role and mechanism of methyltransferase-like 3 (METTL3) mediated up-regulation of N6-methyladenosine (m6A) modified lncRNA THAP7-AS1 expression in promoting the development of lung cancer.
METHODS:
Samples of 120 lung cancer and corresponding paracancerous tissues were collected. LncRNA microarrays were used to analyze differentially expressed lncRNAs. THAP7-AS1 levels were detected in lung cancer, adjacent normal tissues and lung cancer cell lines by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The diagnostic value of THAP7-AS1 in lung cancer and the relationship between THAP7-AS1 expression and survival rate and clinicopathological parameters were analyzed. Bioinformatics analysis, methylated RNA immunoprecipitation (meRIP), RNA pull-down and RNA-immunoprecipitation (RIP) assay were used to investigate the molecular regulation mechanism of THAP7-AS1. Cell proliferation, migration, invasion and tumorigenesis of SPC-A-1 and NCI-H1299 cells were determined by MTS, colony-formation, scratch, Transwell and xenotransplantation in vivo, respectively. Expression levels of phosphoinositide 3-kinase/protein kenase B (PI3K/AKT) signal pathway related protein were detected by Western blot.
RESULTS:
Expression levels of THAP7-AS1 were higher in lung cancer tissues and cell lines (P<0.05). THAP7-AS1 has certain diagnostic value in lung cancer [area under the curve (AUC)=0.737], and its expression associated with overall survival rate, tumor size, tumor-node-metastasis (TNM) stage and lymph node metastasis (P<0.05). METTL3-mediated m6A modification enhanced THAP7-AS1 expression. The cell proliferation, migration, invasion and the volume and mass of transplanted tumor were all higher in the THAP7-AS1 group compared with the NC group and sh-NC group of SPC-A-1 and NCI-H1299 cells, while the cell proliferation, migration and invasion were lower in the sh-THAP7-AS1 group (P<0.05). THAP7-AS1 binds specifically to Cullin 4B (CUL4B). The cell proliferation, migration, invasion, and expression levels of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), phosphoinositide-3 kinase, catalytic subunit delta (PIK3CD), phospho-phosphatidylinositol 3-kinase (p-PI3K), phospho-protein kinase B (p-AKT) and phospho-mammalian target of rapamycin (p-mTOR) were higher in the THAP7-AS1 group compared with the Vector group of SPC-A-1 and NCI-H1299 cells (P<0.05).
CONCLUSIONS
LncRNA THAP7-AS1 is stably expressed through m6A modification mediated by METTL3, and combines with CUL4B to activate PI3K/AKT signal pathway, which promotes the occurrence and development of lung cancer.
Humans
;
Lung Neoplasms/pathology*
;
RNA, Long Noncoding/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Up-Regulation
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Methyltransferases/metabolism*
;
Cullin Proteins/genetics*
3.Hydroxysafflor Yellow A Promotes HaCaT Cell Proliferation and Migration by Regulating HBEGF/EGFR and PI3K/AKT Pathways and Circ_0084443.
Yue ZHANG ; Yan-Wei XIAO ; Jing-Xin MA ; Ao-Xue WANG
Chinese journal of integrative medicine 2024;30(3):213-221
OBJECTIVE:
To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.
METHODS:
HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.
RESULTS:
HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).
CONCLUSION
HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositol 3-Kinases/metabolism*
;
ErbB Receptors/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Cell Proliferation
;
RNA, Messenger/genetics*
;
Cell Movement
;
Cell Line, Tumor
;
Chalcone/analogs & derivatives*
;
Quinones
4.SHED-derived exosomes ameliorate hyposalivation caused by Sjögren's syndrome via Akt/GSK-3β/Slug-mediated ZO-1 expression.
Zhihao DU ; Pan WEI ; Nan JIANG ; Liling WU ; Chong DING ; Guangyan YU
Chinese Medical Journal 2023;136(21):2596-2608
BACKGROUND:
Sjögren's syndrome (SS) is an autoimmune disorder characterized by sicca syndrome and/or systemic manifestations. The treatment is still challenging. This study aimed to explore the therapeutic role and mechanism of exosomes obtained from the supernatant of stem cells derived from human exfoliated deciduous teeth (SHED-exos) in sialadenitis caused by SS.
METHODS:
SHED-exos were administered to the submandibular glands (SMGs) of 14-week-old non-obese diabetic (NOD) mice, an animal model of the clinical phase of SS, by local injection or intraductal infusion. The saliva flow rate was measured after pilocarpine intraperitoneal injection in 21-week-old NOD mice. Protein expression was examined by western blot analysis. Exosomal microRNA (miRNAs) were identified by microarray analysis. Paracellular permeability was evaluated by transepithelial electrical resistance measurement.
RESULTS:
SHED-exos were injected into the SMG of NOD mice and increased saliva secretion. The injected SHED-exos were taken up by glandular epithelial cells, and further increased paracellular permeability mediated by zonula occluden-1 (ZO-1). A total of 180 exosomal miRNAs were identified from SHED-exos, and Kyoto Encyclopedia of Genes and Genomes analysis suggested that the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway might play an important role. SHED-exos treatment down-regulated phospho-Akt (p-Akt)/Akt, phospho-glycogen synthase kinase 3β (p-GSK-3β)/GSK-3β, and Slug expressions and up-regulated ZO-1 expression in SMGs and SMG-C6 cells. Both the increased ZO-1 expression and paracellular permeability induced by SHED-exos were abolished by insulin-like growth factor 1, a PI3K agonist. Slug bound to the ZO-1 promoter and suppressed its expression. For safer and more effective clinical application, SHED-exos were intraductally infused into the SMGs of NOD mice, and saliva secretion was increased and accompanied by decreased levels of p-Akt/Akt, p-GSK-3β/GSK-3β, and Slug and increased ZO-1 expression.
CONCLUSION
Local application of SHED-exos in SMGs can ameliorate Sjögren syndrome-induced hyposalivation by increasing the paracellular permeability of glandular epithelial cells through Akt/GSK-3β/Slug pathway-mediated ZO-1 expression.
Mice
;
Animals
;
Humans
;
Sjogren's Syndrome/therapy*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Tight Junctions/metabolism*
;
Glycogen Synthase Kinase 3 beta
;
Mice, Inbred NOD
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Exosomes/metabolism*
;
Xerostomia
;
Phosphatidylinositol 3-Kinase
;
MicroRNAs/genetics*
5.Role of Eukaryotic Translation Elongation Factor 1 Family Members in the Tumorigenesis and Progression of Lung Adenocarcinoma.
Yue WU ; Jiang-Feng LIU ; Wan-Feng LIANG ; Ye-Hong YANG ; Gang HU ; Jun-Tao YANG
Acta Academiae Medicinae Sinicae 2023;45(6):867-885
Objective To investigate the role and mechanism of eukaryotic translation elongation factor 1(EEF1) family members (EEF1D,EEF1A1,and EEF1A2) in lung adenocarcinoma (LUAD) based on public databases.Methods We examined EEF1 member expression levels in human LUAD samples via The Cancer Genome Atlas in the UCSC Xena browser and the Clinical Proteomic Tumor Analysis Consortium.We analyzed the mRNA and protein levels of EEF1D,EEF1A1,and EEF1A2 and their correlations with pathological variables via the Mann-Whitney U test.The Kaplan-Meier curves were established to assess the prognostic values of EEF1D,EEF1A1,and EEF1A2.The single-sample gene set enrichment analysis algorithm was employed to explore the relationship between the expression levels of EEF1 members and tumor immune cell infiltration.Spearman and Pearson correlation analyses were performed to examine the relationship between the expression levels of EEF1 members and those of the genes in the phosphatidylinositol 3-kinase/protein kinase B signaling pathway.The immunohistochemical assay was employed to determine the expression levels of EEF1D,EEF1A1,and EEF1A2 in the LUAD tissue (n=75) and paracancer tissue (n=75) samples.Results The mRNA and protein levels of EEF1D,EEF1A1,and EEF1A2 showed significant differences between tumor and paracancer tissues (all P<0.001).The patients with high protein levels of EEF1A1 showed bad prognosis in terms of overall survival (P=0.039),and those with high protein levels of EEF1A2 showed good prognosis in terms of overall survival (P=0.012).The influence of the mRNA level of EEF1D on prognosis was associated with pathological characteristics.The expression levels of EEF1 members were significantly associated with the infiltration of various immune cells and the expression of key molecules in the phosphatidylinositol 3-kinase/protein kinase B signaling pathway.Conclusion EEF1D,EEF1A1,and EEF1A2 are associated with the progression of LUAD,serving as the candidate prognostic markers for LUAD.
Humans
;
Peptide Elongation Factor 1/metabolism*
;
Proteomics
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Carcinogenesis
;
Adenocarcinoma of Lung
;
Lung Neoplasms
;
RNA, Messenger/genetics*
;
Phosphatidylinositol 3-Kinases
;
Prognosis
6.Inhibitory effect and molecular mechanism of sinomenine on human hepatocellular carcinoma HepG2 and SK-HEP-1 cells.
Ying-Ying TIAN ; Bei-Bei MA ; Xin-Yue ZHAO ; Chuang LIU ; Yi-Lin LI ; Shang-Yue YU ; Shi-Qiu TIAN ; Hai-Luan PEI ; Ying-Nan LYU ; Ze-Ping ZUO ; Zhi-Bin WANG
China Journal of Chinese Materia Medica 2023;48(17):4702-4710
This study aimed to investigate the effect and molecular mechanism of sinomenine on proliferation, apoptosis, metastasis, and combination with inhibitors in human hepatocellular carcinoma HepG2 cells and SK-HEP-1 cells. The effect of sinomenine on the growth ability of HepG2 and SK-HEP-1 cells were investigated by CCK-8 assay, colony formation assay, and BeyoClick~(TM) EdU-488 staining. The effect of sinomenine on DNA damage was detected by immunofluorescence assay, and the effect of sinomenine on apoptosis of human hepatocellular carcinoma cells was clarified by Hoechst 33258 staining and CellEvent~(TM) Cystein-3/7Green ReadyProbes~(TM) reagent assay. Cell invasion assay and 3D tumor cell spheroid invasion assay were performed to investigate the effect of sinomenine on the invasion ability of human hepatocellular carcinoma cells in vitro. The effect of sinomenine on the regulation of protein expression related to the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/signal transducer and activator of transcription 3(STAT3) signaling pathway in HepG2 and SK-HEP-1 cells was examined by Western blot. Molecular docking was used to evaluate the strength of affinity of sinomenine to the target cysteinyl aspartate specific proteinase-3(caspase-3) and STAT3, and combined with CCK-8 assay to detect the changes in cell viability after combination with STAT3 inhibitor JSI-124 in combination with CCK-8 assay. The results showed that sinomenine could significantly reduce the cell viability of human hepatocellular carcinoma cells in a concentration-and time-dependent manner, significantly inhibit the clonogenic ability of human hepatocellular carcinoma cells, and weaken the invasive ability of human hepatocellular carcinoma cells in vitro. In addition, sinomenine could up-regulate the cleaved level of poly ADP-ribose polymerase(PARP), a marker of apoptosis, and down-regulate the protein levels of p-Akt, p-mTOR, and p-STAT3 in human hepatocellular carcinoma cells. Molecular docking results showed that sinomenine had good affinity with the targets caspase-3 and STAT3, and the sensitivity of sinomenine to hepatocellular carcinoma cells was diminished after STAT3 was inhibited. Therefore, sinomenine can inhibit the proliferation and invasion of human hepatocellular carcinoma cells and induce apoptosis, and the mechanism may be attributed to the activation of caspase-3 signaling and inhibition of the Akt/mTOR/STAT3 pathway. This study can provide a new reference for the in-depth research and clinical application of sinomenine and is of great significance to further promote the scientific development and utilization of sinomenine.
Humans
;
Carcinoma, Hepatocellular/genetics*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Caspase 3/metabolism*
;
Liver Neoplasms/genetics*
;
Molecular Docking Simulation
;
Sincalide/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Hep G2 Cells
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
7.Mechanism of astragaloside Ⅳ in regulating autophagy of PC12 cells under oxygen-glucose deprivation by medicating Akt/mTOR/HIF-1α pathway.
Jia-Xin LONG ; Meng-Zhi TIAN ; Xiao-Yi CHEN ; Yu XIONG ; Huang-He YU ; Yong-Zhen GONG ; Huang DING ; Ming-Xia XIE ; Ke DU
China Journal of Chinese Materia Medica 2023;48(19):5271-5277
This study explored the protective effect of astragaloside Ⅳ(AS-Ⅳ) on oxygen-glucose deprivation(OGD)-induced autophagic injury in PC12 cells and its underlying mechanism. An OGD-induced autophagic injury model in vitro was established in PC12 cells. The cells were divided into a normal group, an OGD group, low-, medium-, and high-dose AS-Ⅳ groups, and a positive drug dexmedetomidine(DEX) group. Cell viability was measured using the MTT assay. Transmission electron microscopy was used to observe autophagosomes and autolysosomes, and the MDC staining method was used to assess the fluorescence intensity of autophagosomes. Western blot was conducted to determine the relative expression levels of functional proteins LC3-Ⅱ/LC3-Ⅰ, Beclin1, p-Akt/Akt, p-mTOR/mTOR, and HIF-1α. Compared with the normal group, the OGD group exhibited a significant decrease in cell viability(P<0.01), an increase in autophagosomes(P<0.01), enhanced fluorescence intensity of autophagosomes(P<0.01), up-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and down-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.05 or P<0.01). Compared with the OGD group, the low-and medium-dose AS-Ⅳ groups and the DEX group showed a significant increase in cell viability(P<0.01), decreased autophagosomes(P<0.01), weakened fluorescence intensity of autophagosomes(P<0.01), down-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and up-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.01). AS-Ⅳ at low and medium doses exerted a protective effect against OGD-induced autophagic injury in PC12 cells by activating the Akt/mTOR pathway, subsequently influencing HIF-1α. The high-dose AS-Ⅳ group did not show a statistically significant difference compared with the OGD group. This study provides a certain target reference for the prevention and treatment of OGD-induced cellular autophagic injury by AS-Ⅳ and accumulates laboratory data for the secondary development of Astragali Radix and AS-Ⅳ.
Rats
;
Animals
;
PC12 Cells
;
Proto-Oncogene Proteins c-akt/genetics*
;
Glucose/therapeutic use*
;
Oxygen/metabolism*
;
Beclin-1/pharmacology*
;
TOR Serine-Threonine Kinases/metabolism*
;
Autophagy
;
Apoptosis
;
Reperfusion Injury/drug therapy*
8.Blaps rynchopetera combined with cyclophosphamide affects proliferation and apoptosis of lung cancer cells via Wnt/β-catenin signaling pathway.
Jing-Nan YAN ; Ke MA ; Wen-Jie LIU ; Ying LIN ; Xiu-Yu LI ; Dan WU
China Journal of Chinese Materia Medica 2023;48(20):5603-5611
This study aims to investigate the effects of Blaps rynchopetera Fairmaire and/or cyclophosphamide on the proliferation and apoptosis of lung cancer cells and decipher the underlying mechanism. B. rynchopetera and cyclophosphamide-containing serum and blank serum were prepared from SD rats. Cell counting kit-8(CCK-8) assay was employed to examine the proliferation of lung cancer cell lines A549 and Lewis treated with corresponding agents. The Jin's formula method was used to evaluate the combined effect of the two drugs. According to the evaluation results, appropriate drug concentrations and lung cancer cell line were selected for subsequent experiments, which included control, B. rynchopetera, cyclophosphamide, B. rynchopetera + cyclophosphamide, and B. rynchopetera + Wnt/β-catenin pathway agonist lithium chloride(LiCl) groups. Immunocytochemistry was employed to measure the expression of proliferation-related proteins in Lewis cells after drug interventions. Flow cytometry was employed to determine the cell cycle and apoptosis. The expression levels of proliferating cell nuclear antigen(PCNA), cyclinD1, B-cell lymphoma 2(Bcl-2), Bcl-2-assiocated X protein(Bax), Wnt1, and β-catenin were determined by Western blot. The results showed that B. rynchopetera and/or cyclophosphamide significantly inhibited the proliferation of A549 and Lewis cells. Compared with B. rynchopetera alone, the combination increased the inhibition rate on cell proliferation. The combination of B. rynchopetera and cyclophosphamide demonstrated a synergistic effect according to Jin's formula-based evaluation. Compared with the control group, the B. rynchopetera, cyclophosphamide, and B. rynchopetera + cyclophosphamide groups showed increased proportion of Lewis cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. Compared with the cyclophosphamide group, the combination group showed increased proportion of cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. Compared with the B. rynchopetera group, the B. rynchopetera + LiCl group had deceased proportion of cells in G_0/G_1 phase, decreased apoptosis rate, down-regulated expression of Bax, and up-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. The results indicated that B. rynchopetera could inhibit the proliferation, arrest the cell cycle, and induce the apoptosis of lung cancer cells by inhibiting the Wnt/β-catenin signaling pathway. Moreover, B. rynchopetera had a synergistic effect with cyclophosphamide.
Rats
;
Animals
;
Wnt Signaling Pathway
;
Lung Neoplasms/genetics*
;
beta Catenin/metabolism*
;
Proliferating Cell Nuclear Antigen
;
bcl-2-Associated X Protein/metabolism*
;
Rats, Inbred Lew
;
Rats, Sprague-Dawley
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Proliferation
;
Cyclophosphamide
;
Cell Line, Tumor
9.Effect and mechanism of Danggui Buxue Decoction-containing serum in mitigating H9c2 cell injury caused by exposure to intermittent low oxygen.
Ting-Ting LI ; Jie CHEN ; En-Sheng JI ; Ya-Jing GUO
China Journal of Chinese Materia Medica 2023;48(21):5881-5887
This study aims to explore the effect and mechanism of Danggui Buxue Decoction(DBD)-containing serum in alleviating the H9c2 cell injury caused by the exposure to intermittent low oxygen. H9c2 cells were assigned into five groups: control(CON) group, intermittent low oxygen(IH) group, intermittent low oxygen plus DBD-containing serum(IH+DBD) group, intermittent low oxygen plus the autophagy enhancer rapamycin(IH+RAPA) group, and intermittent low oxygen plus DBD-containing serum and the autophagy inhibitor 3-methyladenine(IH+DBD+3-MA) group. Monodansylcadaverine(MDC) staining was employed to detect the changes of autophagosomes. Cell counting kit-8(CCK-8) assay was employed to determine the activity of myocardial cells, and lactate dehydrogenase(LDH) and creatine kinase(CK) kits were used to measure the LDH and CK levels in the cell culture, which would reflect the degree of cell damage. TdT-mediated dUTP nick-end labeling(TUNEL) staining was used to detect the apoptosis of myocardial cells, and JC-1 fluorescence probe to detect the changes in mitochondrial membrane potential. Western blot was employed to determine the expression levels of the autophagy-related proteins microtubule-associated proteins light chain 3Ⅱ(LC3Ⅱ), microtubule-associated proteins light chain 3Ⅰ(LC3Ⅰ), P62, Parkin and apoptosis related proteins pro caspase-3, caspase-3, B-cell lymphoma-2(Bcl-2), Bcl-2-associated X(Bax). The results showed that compared with the CON group, the IH group showed decreased fluorescence intensity of MDC staining, decreased LC3Ⅱ/LC3Ⅰ ratio, down-regulated Parkin expression, and up-regulated expression of P62. In addition, the IH group showed decreased cell survival rate, increased content of LDH and CK in the culture medium, increased number of TUNEL positive cells, and decreased pro caspase-3/caspase-3 and Bcl-2/Bax ratios and mitochondrial membrane potential. Compared with the IH group, the IH+DBD and IH+RAPA groups showed increased fluorescence intensity of MDC staining, increased LC3Ⅱ/LC3Ⅰ ratio, up-regulated Parkin expression, and down-regulated P62 expression. In addition, the two groups showed increased cell survival rate, reduced content of LDH and CK in the culture medium, decreased number of TUNEL positive cells, and increased pro caspase-3/caspase-3 and Bcl-2/Bax ratios and mitochondrial membrane potential. The IH+DBD+3-MA and IH groups showed no significant differences in the above indicators. Compared with the IH+DBD group, the IH+DBD+3-MA group showed decreased fluorescence intensity of MDC staining, decreased LC3Ⅱ/LC3Ⅰ ratio, down-regulated Parkin expression, and up-regulated P62 expression. In addition, the group had decreased cell survival rate, increased content of LDH and CK in the culture medium, increased number of TUNEL positive cells, decreased pro caspase-3/caspase-3 and Bcl-2/Bax ratios, and declined mitochon-drial membrane potential. To sum up, DBD could promote the mitophagy, inhibit the apoptosis, and alleviated the injury of H9c2 cells exposed to low oxygen.
Oxygen
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/genetics*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Autophagy
;
Ubiquitin-Protein Ligases
;
Microtubule-Associated Proteins
10.Effect of Long Non-Coding RNA LINC01268 on the Malignant Biological Behaviors of Acute Myeloid Leukemia Cells.
Journal of Experimental Hematology 2023;31(6):1608-1616
OBJECTIVE:
To investigate the effect of long non-coding RNA LINC01268 on apoptosis of acute myeloid leukemia (AML) cells and related mechanisms.
METHODS:
The expression levels of LINC01268 and miR-217 in peripheral blood samples from AML patients and AML cell lines HL-60 and KG-1 were detected by qRT-PCR. HL-60 cells were divided into pcDNA3.1-NC, pcDNA3.1-LINC01268, si-NC, si-LINC01268, miR-NC, miR-217 mimics, si-LINC01268 + inhibitor-NC and si-LINC01268+ miR-217 inhibitor groups. The mRNA expressions of LINC01268 and miR-217 were detected by qRT-PCR. The targeting relationship between LINC01268 and miR-217 was detected by dual-luciferase reporter assay. Cell viability was detected by CCK-8 assay. Cell cycle distribution and apoptosis were detected by flow cytometry. The expression of cell cycle and apoptosis-related proteins p21, Bcl-2, Bax, caspase-3 and PI3K/AKT signaling pathway-related proteins were detected by Western blot.
RESULTS:
The expression of LINC01268 in peripheral blood samples of AML patients and AML cell lines HL-60 and KG-1 was increased (P < 0.05), and the expression of miR-217 was decreased (P < 0.05). Compared with si-NC group and miR-NC group, the viability of HL-60 cells was decreased in si-LINC01268 group and miR-217 mimics group (P < 0.05), the proportion of cells in G1 phase and apoptosis rate were increased (P < 0.05), the protein expression levels of p21, Bax and caspase-3 were increased (P < 0.05), while the protein expression level of Bcl-2 was decreased (P < 0.05). LINC01268 targeted and negatively regulated the expression of miR-217, and inhibiting the expression of miR-217 partially reversed the effects of LINC01268 interference on the viability, cell cycle and apoptosis of HL-60 cells. Interference with LINC01268 could inhibit the activity of PI3K/AKT signaling pathway. Inhibiting the expression of miR-217 could partially reverse the inhibition of LINC01268 interference on PI3K/AKT signaling pathway.
CONCLUSION
LINC01268 is highly expressed and miR-217 is lowly expressed in AML cells. LINC01268 can promote the activity of PI3K/AKT signaling pathway, increase the survival rate and inhibit the apoptosis of AML cells by targeting miR-217 expression.
Humans
;
Apoptosis
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3
;
Cell Line, Tumor
;
Cell Proliferation
;
Leukemia, Myeloid, Acute/metabolism*
;
MicroRNAs/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Long Noncoding/genetics*

Result Analysis
Print
Save
E-mail