1.Proteome and genome integration analysis of obesity.
Qigang ZHAO ; Baixue HAN ; Qian XU ; Tao WANG ; Chen FANG ; Rui LI ; Lei ZHANG ; Yufang PEI
Chinese Medical Journal 2023;136(8):910-921
The prevalence of obesity has increased worldwide in recent decades. Genetic factors are now known to play a substantial role in the predisposition to obesity and may contribute up to 70% of the risk for obesity. Technological advancements during the last decades have allowed the identification of many hundreds of genetic markers associated with obesity. However, the transformation of current genetic variant-obesity associations into biological knowledge has been proven challenging. Genomics and proteomics are complementary fields, as proteomics extends functional analyses. Integrating genomic and proteomic data can help to bridge a gap in knowledge regarding genetic variant-obesity associations and to identify new drug targets for the treatment of obesity. We provide an overview of the published papers on the integrated analysis of proteomic and genomic data in obesity and summarize four mainstream strategies: overlap, colocalization, Mendelian randomization, and proteome-wide association studies. The integrated analyses identified many obesity-associated proteins, such as leptin, follistatin, and adenylate cyclase 3. Despite great progress, integrative studies focusing on obesity are still limited. There is an increased demand for large prospective cohort studies to identify and validate findings, and further apply these findings to the prevention, intervention, and treatment of obesity. In addition, we also discuss several other potential integration methods.
Humans
;
Proteome/metabolism*
;
Proteomics
;
Prospective Studies
;
Obesity/genetics*
;
Genomics
;
Genome-Wide Association Study
2.The physiology of plant seed aging: a review.
Peilin HAN ; Yueming LI ; Zihao LIU ; Wanli ZHOU ; Fan YANG ; Jinghong WANG ; Xiufeng YAN ; Jixiang LIN
Chinese Journal of Biotechnology 2022;38(1):77-88
Seed quality plays an important role in the agricultural and animal husbandry production, the effective utilization of genetic resources, the conservation of biodiversity and the restoration and reconstruction of plant communities. Seed aging is a common physiological phenomenon during storage. It is a natural irreversible process that occurs and develops along with the extension of seed storage time. It is not only related to the growth, yield and quality of seed and seedling establishment, but also has an important effect on the conservation, utilization and development of plant germplasm resources. The physiological mechanisms of seed aging are complex and diverse. Most studies focus on conventional physiological characterization, while systematic and comprehensive in-depth studies are lacking. Here we review the recent advances in understanding the physiology of seed aging process, including the methods of seed aging, the effect of aging on seed germination, and the physiological and molecular mechanisms of seed aging. The change of multiple physiological parameters, including seed vigor, electrical conductivity, malondialdehyde content and storage material in the seed, antioxidant enzyme activity and mitochondrial structure, were summarized. Moreover, insights into the mechanism of seed aging from the aspects of transcriptome, proteome and aging related gene function were summarized. This study may facilitate the research of seed biology and the conservation and utilization of germplasm resources.
Germination
;
Plants
;
Proteome
;
Seedlings
;
Seeds/genetics*
3.Close association between abnormal expressed enzymes of energy metabolism and diarrhea-predominant irritable bowel syndrome.
Chun-Yan ZHANG ; Xin YAO ; Gang SUN ; Yun-Sheng YANG
Chinese Medical Journal 2019;132(2):135-144
BACKGROUND:
Irritable bowel syndrome (IBS) is one of the most common functional intestinal diseases, but its pathogenesis is still unknown. The present study aimed to screen the differentially expressed proteins in the mucosa of colon between IBS with diarrhea (IBS-D) patients and the healthy controls.
METHODS:
Forty-two IBS-D patients meeting the Rome III diagnostic criteria and 40 control subjects from July 2007 to June 2009 in Chinese PLA General Hospital were enrolled in the present study. We examined the protein expression profiles in mucosa of colon corresponding to IBS-D patients (n = 5) and controls (n = 5) using 2-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). Secondly, Western blot and immunohistochemical analysis were carried out to validate the screened proteins in 27 IBS-D patients and 27 controls. Thirdly, high-performance liquid chromatography (HPLC) was further carried out to determine ATP concentration in the mucosa of colon between 10 IBS-D patients and 8 controls. Comparisons between 2 groups were performed by Student's t-test or Mann-Whitney U-test.
RESULTS:
Twelve differentially expressed proteins were screened out. The α-enolase (ENOA) in the sigmoid colon (0.917 ± 0.007 vs. 1.310 ± 0.100, t = 2.643, P = 0.017) and caecum (0.765 ± 0.060 vs. 1.212 ± 0.122, t = 2.225, P = 0.023), Isobutyryl-CoA dehydrogenase (ACAD8) in the sigmoid colon (1.127 ± 0.201 vs. 1.497 ± 0.392, t = 7.093, P = 0.008) of the IBS-D group were significantly lower while acetyl-CoA acetyltransferase (CT) in the caecum (2.453 ± 0.422 vs. 0.931 ± 0.652, t = 8.363, P = 0.015) and ATP synthase subunit d (ATP5H) in the sigmoid (0.843 ± 0.042 vs. 0.631 ± 0.042, t = 8.613,P = 0.007) of the IBS-D group was significantly higher, compared with the controls. The ATP concentration in the mucosa of the sigmoid colon in IBS-D group was significantly lower than that of control group (0.470 [0.180, 1.360] vs. 5.350 [2.230, 7.900], U = 55, P < 0.001).
CONCLUSIONS
Many proteins related to energy metabolism presented differential expression patterns in the mucosa of colon of the IBS-D patients. The abnormalities in energy metabolism may be involved in the pathogenesis of IBS which deserves more studies to elucidate.
Adenosine Triphosphate
;
metabolism
;
Adult
;
Blotting, Western
;
Colon
;
metabolism
;
pathology
;
Diarrhea
;
enzymology
;
metabolism
;
pathology
;
Electrophoresis, Gel, Two-Dimensional
;
Energy Metabolism
;
genetics
;
physiology
;
Female
;
Humans
;
Immunohistochemistry
;
Intestinal Mucosa
;
enzymology
;
metabolism
;
pathology
;
Irritable Bowel Syndrome
;
enzymology
;
metabolism
;
pathology
;
Male
;
Mass Spectrometry
;
Middle Aged
;
Proteome
;
metabolism
4.Screening of Serum Biomarkers for Distinguishing between Latent and Active Tuberculosis Using Proteome Microarray.
Shu Hui CAO ; Yan Qing CHEN ; Yong SUN ; Yang LIU ; Su Hua ZHENG ; Zhi Guo ZHANG ; Chuan You LI
Biomedical and Environmental Sciences 2018;31(7):515-526
OBJECTIVETo identify potential serum biomarkers for distinguishing between latent tuberculosis infection (LTBI) and active tuberculosis (TB).
METHODSA proteome microarray containing 4,262 antigens was used for screening serum biomarkers of 40 serum samples from patients with LTBI and active TB at the systems level. The interaction network and functional classification of differentially expressed antigens were analyzed using STRING 10.0 and the TB database, respectively. Enzyme-linked immunosorbent assays (ELISA) were used to validate candidate antigens further using 279 samples. The diagnostic performances of candidate antigens were evaluated by receiver operating characteristic curve (ROC) analysis. Both antigen combination and logistic regression analysis were used to improve diagnostic ability.
RESULTSMicroarray results showed that levels of 152 Mycobacterium tuberculosis (Mtb)-antigen- specific IgG were significantly higher in active TB patients than in LTBI patients (P < 0.05), and these differentially expressed antigens showed stronger associations with each other and were involved in various biological processes. Eleven candidate antigens were further validated using ELISA and showed consistent results in microarray analysis. ROC analysis showed that antigens Rv2031c, Rv1408, and Rv2421c had higher areas under the curve (AUCs) of 0.8520, 0.8152, and 0.7970, respectively. In addition, both antigen combination and logistic regression analysis improved the diagnostic ability.
CONCLUSIONSeveral antigens have the potential to serve as serum biomarkers for discrimination between LTBI and active TB.
Adolescent ; Adult ; Aged ; Antibodies, Bacterial ; Antibody Specificity ; Antigens, Bacterial ; Biomarkers ; blood ; Female ; Humans ; Latent Tuberculosis ; blood ; diagnosis ; Logistic Models ; Male ; Middle Aged ; Mycobacterium tuberculosis ; Protein Array Analysis ; methods ; Proteome ; genetics ; Proteomics ; methods ; ROC Curve ; Young Adult
5.Label-free quantitative proteomics reveals fibrinopeptide B and heparin cofactor II as potential serum biomarkers in respiratory syncytial virus-infected mice treated with Qingfei oral liquid formula.
Li-Hua ZHOU ; Jian-Ya XU ; Chen DAI ; Yi-Man FAN ; Bin YUAN
Chinese Journal of Natural Medicines (English Ed.) 2018;16(4):241-251
Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid (QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumonia. The present study was designed to reveal the potential targets and mechanism of action for QFOL by exploring its influence on the host cellular network following RSV infection. We investigated the serum proteomic changes and potential biomarkers in an RSV-infected mouse pneumonia model treated with QFOL. Eighteen BALB/c mice were randomly divided into three groups: RSV pneumonia model group (M), QFOL-treated group (Q) and the control group (C). Serum proteomes were analyzed and compared using a label-free quantitative LC-MS/MS approach. A total of 172 protein groups, 1009 proteins, and 1073 unique peptides were successfully identified. 51 differentially expressed proteins (DEPs) were identified (15 DEPs when M/C and 43 DEPs when Q/M; 7 DEPs in common). Classification and interaction network showed that these proteins participated in various biological processes including immune response, blood coagulation, complement activation, and so forth. Particularly, fibrinopeptide B (FpB) and heparin cofactor II (HCII) were evaluated as important nodes in the interaction network, which was closely involved in coagulation and inflammation. Further, the FpB level was increased in Group M but decreased in Group Q, while the HCII level exhibited the opposite trend. These findings not only indicated FpB and HCII as potential biomarkers and targets of QFOL in the treatment of RSV pneumonia, but also suggested a regulatory role of QFOL in the RSV-induced disturbance of coagulation and inflammation-coagulation interactions.
Animals
;
Biomarkers
;
blood
;
Chromatography, Liquid
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
pharmacology
;
therapeutic use
;
Fibrinopeptide B
;
analysis
;
genetics
;
Gene Expression Regulation
;
drug effects
;
Heparin Cofactor II
;
analysis
;
genetics
;
Lung
;
pathology
;
Mice, Inbred BALB C
;
Proteome
;
drug effects
;
Proteomics
;
Respiratory Syncytial Virus Infections
;
blood
;
drug therapy
;
Respiratory Syncytial Viruses
;
drug effects
;
Tandem Mass Spectrometry
6.Brain-Derived Glia Maturation Factor β Participates in Lung Injury Induced by Acute Cerebral Ischemia by Increasing ROS in Endothelial Cells.
Fei-Fei XU ; Zi-Bin ZHANG ; Yang-Yang WANG ; Ting-Hua WANG
Neuroscience Bulletin 2018;34(6):1077-1090
Brain damage can cause lung injury. To explore the mechanism underlying the lung injury induced by acute cerebral ischemia (ACI), we established a middle cerebral artery occlusion (MCAO) model in male Sprague-Dawley rats. We focused on glia maturation factor β (GMFB) based on quantitative analysis of the global rat serum proteome. Polymerase chain reaction, western blotting, and immunofluorescence revealed that GMFB was over-expressed in astrocytes in the brains of rats subjected to MCAO. We cultured rat primary astrocytes and confirmed that GMFB was also up-regulated in primary astrocytes after oxygen-glucose deprivation (OGD). We subjected the primary astrocytes to Gmfb RNA interference before OGD and collected the conditioned medium (CM) after OGD. We then used the CM to culture pulmonary microvascular endothelial cells (PMVECs) acquired in advance and assessed their status. The viability of the PMVECs improved significantly when Gmfb was blocked. Moreover, ELISA assays revealed an elevation in GMFB concentration in the medium after OGD. Cell cultures containing recombinant GMFB showed increased levels of reactive oxygen species and a deterioration in the state of the cells. In conclusion, GMFB is up-regulated in astrocytes after ACI, and brain-derived GMFB damages PMVECs by increasing reactive oxygen species. GMFB might thus be an initiator of the lung injury induced by ACI.
Animals
;
Brain
;
metabolism
;
pathology
;
Brain Ischemia
;
complications
;
pathology
;
Bronchoalveolar Lavage Fluid
;
Cell Hypoxia
;
physiology
;
Cells, Cultured
;
Cerebrovascular Circulation
;
physiology
;
Chromatography, High Pressure Liquid
;
Culture Media, Conditioned
;
pharmacology
;
Disease Models, Animal
;
Endothelial Cells
;
metabolism
;
Gene Expression Regulation
;
physiology
;
Glia Maturation Factor
;
metabolism
;
In Situ Nick-End Labeling
;
Lung Injury
;
etiology
;
metabolism
;
pathology
;
Male
;
Neuroglia
;
metabolism
;
Neurologic Examination
;
Peroxidase
;
metabolism
;
Proteome
;
RNA Interference
;
physiology
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Tandem Mass Spectrometry
7.Transcriptional and translational responses of rapeseed leaves to red and blue lights at the rosette stage.
Sheng-Xin CHANG ; Chu PU ; Rong-Zhan GUAN ; Min PU ; Zhi-Gang XU
Journal of Zhejiang University. Science. B 2018;19(8):581-595
Under different red (R):blue (B) photon flux ratios, the growth performance of rapeseed (Brassica napus L.) is significantly different. Rapeseed under high R ratios shows shade response, while under high B ratios it shows sun-type morphology. Rapeseed under monochromatic red or blue light is seriously stressed. Transcriptomic and proteomic methods were used to analyze the metabolic pathway change of rapeseed (cv. "Zhongshuang 11") leaves under different R:B photon flux ratios (including 100R:0B%, 75R:25B%, 25R:75B%, and 0R:100B%), based on digital gene expression (DGE) and two-dimensional gel electrophoresis (2-DE). For DGE analysis, 2054 differentially expressed transcripts (|log2(fold change)|≥1, q<0.005) were detected among the treatments. High R ratios (100R:0B% and 75R:25B%) enhanced the expression of cellular structural components, mainly the cell wall and cell membrane. These components participated in plant epidermis development and anatomical structure morphogenesis. This might be related to the shade response induced by red light. High B ratios (25R:75B% and 0R:100B%) promoted the expression of chloroplast-related components, which might be involved in the formation of sun-type chloroplast induced by blue light. For 2-DE analysis, 37 protein spots showed more than a 2-fold difference in expression among the treatments. Monochromatic light (ML; 100R:0B% and 0R:100B%) stimulated accumulation of proteins associated with antioxidation, photosystem II (PSII), DNA and ribosome repairs, while compound light (CL; 75R:25B% and 25R:75B%) accelerated accumulation of proteins associated with carbohydrate, nucleic acid, amino acid, vitamin, and xanthophyll metabolisms. These findings can be useful in understanding the response mechanisms of rapeseed leaves to different R:B photon flux ratios.
Brassica napus/radiation effects*
;
Brassica rapa/radiation effects*
;
Carbon/chemistry*
;
Chloroplasts/radiation effects*
;
Computational Biology
;
Electrophoresis, Gel, Two-Dimensional
;
Gene Expression Regulation, Plant/radiation effects*
;
Image Processing, Computer-Assisted
;
Light
;
Mass Spectrometry
;
Metabolic Networks and Pathways
;
Nitrogen/chemistry*
;
Photons
;
Photosystem II Protein Complex/genetics*
;
Plant Leaves/radiation effects*
;
Plant Proteins/genetics*
;
Proteome
;
Ribosomes
;
Transcription, Genetic
;
Transcriptome
8.Global protein expression analysis of molecular markers of DS-1-47, a component of implantation-promoting traditional chinese medicine.
Yan-Ling LI ; Xiao-Yan ZHANG ; Yu LENG ; Yan-Li WU ; Jing LI ; Yun-Xia WU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(6):910-915
This study investigated the molecular markers of DS-1-47, a component of an implantation- promoting traditional Chinese medicine consisting of Astragalus mongholicus, Atractylodes macrocephala, Scutellaria baicalensis and Dipsacales, in an attempt to clarify the molecular mechanism and action targets of DS-1-47. Controlled ovarian stimulation (COS) method was used to establish the implantation dysfunction models of mice. Animals were divided into normal pregnant group, COS model group and DS-1-47 group. Laser capture microdissection-double dimensional electrophoresis-mass spectrum (LCM-DE-MS) was used to analyze the uterine protein molecules that were possibly involved in the promotion of implantation. Twenty-three proteins in DS-1-47 group were significantly changed as compared to those in COS model group, with 7 proteins down-regulated and 16 proteins up-regulated. Except for some constituent proteins, the down-regulated proteins included collagen α-1 (VI) chain, keratin 7, keratin 14, myosin regulatory light chain 12B, myosin light polypeptide 9, heat shock protein β-7, and C-U-editing enzyme APOBEC-2; the up-regulated proteins included apolipoprotein A-I, calcium regulated protein-3, proliferating cell nuclear antigen, L-xylulose reductase, and calcium binding protein. These 23 proteins that were regulated by DS-1-47 represented a broad diversity of molecule functions. The down-regulated proteins were associated with stress and immune response, and those up-regulated proteins were related to proliferation. It was suggested that these proteins were important in regulating the uterine environment for the blastocyst implantation. By identification of DS-1-47 markers, proteomic analysis coupled with functional assays is demonstrated to be a promising approach to better understand the molecular mechanism of traditional Chinese medicine.
Animals
;
Drugs, Chinese Herbal
;
pharmacology
;
Embryo Implantation
;
drug effects
;
Female
;
Mice
;
Ovulation Induction
;
Pregnancy
;
Proteome
;
genetics
;
metabolism
;
Uterus
;
drug effects
;
metabolism
;
physiology
9.Progress in omics research of Aspergillus niger.
Yufei SUI ; Liming OUYANG ; Hongzhong LU ; Yingping ZHUANG ; Siliang ZHANG
Chinese Journal of Biotechnology 2016;32(8):1010-1025
Aspergillus niger, as an important industrial fermentation strain, is widely applied in the production of organic acids and industrial enzymes. With the development of diverse omics technologies, the data of genome, transcriptome, proteome and metabolome of A. niger are increasing continuously, which declared the coming era of big data for the research in fermentation process of A. niger. The data analysis from single omics and the comparison of multi-omics, to the integrations of multi-omics based on the genome-scale metabolic network model largely extends the intensive and systematic understanding of the efficient production mechanism of A. niger. It also provides possibilities for the reasonable global optimization of strain performance by genetic modification and process regulation. We reviewed and summarized progress in omics research of A. niger, and proposed the development direction of omics research on this cell factory.
Aspergillus niger
;
genetics
;
Fermentation
;
Genome, Fungal
;
Metabolic Networks and Pathways
;
Metabolome
;
Proteome
;
Transcriptome
10.Moyamoya Biomarkers.
Journal of Korean Neurosurgical Society 2015;57(6):415-421
Moyamoya disease (MMD) is an arteriopathy of the intracranial circulation predominantly affecting the branches of the internal carotid arteries. Heterogeneity in presentation, progression and response to therapy has prompted intense study to improve the diagnosis and prognosis of this disease. Recent progress in the development of moyamoya-related biomarkers has stimulated marked interest in this field. Biomarkers can be defined as biologically derived agents-such as specific molecules or unique patterns on imaging-that can identify the presence of disease or help to predict its course. This article reviews the current categories of biomarkers relevant to MMD-including proteins, cells and genes-along with potential limitations and applications for their use.
Biomarkers*
;
Carotid Artery, Internal
;
Diagnosis
;
Genetics
;
Moyamoya Disease
;
Population Characteristics
;
Prognosis
;
Proteome
;
Stroke

Result Analysis
Print
Save
E-mail