1.The relationship of SHP1 expression in liver tissues with the activation and proliferation of hepatic stellate cells in vivo during the pathologic processes of hepatic fibrosis in rats.
Li-Sen HAO ; Pan-Pan CHEN ; Li-Min JIN ; Zong-Yuan ZHAN ; Xiao-Shi YANG ; Jing-Xiu JI ; Mei-Yu JIANG ; Yan-Bo MO
Chinese Journal of Applied Physiology 2022;38(1):58-61
2.CD36 gene deletion reduces muscle insulin sensitivity in mice by up-regulating PTP1B expression.
Lin CHEN ; Han ZENG ; Hong QIN ; Xiong Zhong RUAN ; Ping YANG
Journal of Southern Medical University 2022;42(3):392-398
OBJECTIVE:
To investigate the effect CD36 deficiency on muscle insulin signaling in mice fed a normal-fat diet and explore the possible mechanism.
METHODS:
Wild-type (WT) mice and systemic CD36 knockout (CD36-/-) mice with normal feeding for 14 weeks (n=12) were subjected to insulin tolerance test (ITT) after intraperitoneal injection with insulin (1 U/kg). Real-time PCR was used to detect the mRNA expressions of insulin receptor (IR), insulin receptor substrate 1/2 (IRS1/2) and protein tyrosine phosphatase 1B (PTP1B), and Western blotting was performed to detect the protein expressions of AKT, IR, IRS1/2 and PTP1B in the muscle tissues of the mice. Tyrosine phosphorylation of IR and IRS1 and histone acetylation of PTP1B promoter in muscle tissues were detected using co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP), respectively.
RESULTS:
CD36-/- mice showed significantly lowered insulin sensitivity with obviously decreased area under the insulin tolerance curve in comparison with the WT mice (P < 0.05). CD36-/- mice also had significantly higher serum insulin concentration and HOMA-IR than WT mice (P < 0.05). Western blotting showed that the p-AKT/AKT ratio in the muscle tissues was significantly decreased in CD36-/- mice as compared with the WT mice (P < 0.01). No significant differences were found in mRNA and protein levels of IR, IRS1 and IRS2 in the muscle tissues between WT and CD36-/- mice (P>0.05). In the muscle tissue of CD36-/- mice, tyrosine phosphorylation levels of IR and IRS1 were significantly decreased (P < 0.05), and the mRNA and protein levels of PTP1B (P < 0.05) and histone acetylation level of PTP1B promoters (P < 0.01) were significantly increased as compared with those in the WT mice. Intraperitoneal injection of claramine, a PTP1B inhibitor, effectively improved the impairment of insulin sensitivity in CD36-/- mice.
CONCLUSION
CD36 is essential for maintaining muscle insulin sensitivity under physiological conditions, and CD36 gene deletion in mice causes impaired insulin sensitivity by up-regulating muscle PTP1B expression, which results in detyrosine phosphorylation of IR and IRS1.
Animals
;
Gene Deletion
;
Histones/genetics*
;
Insulin
;
Insulin Receptor Substrate Proteins/metabolism*
;
Insulin Resistance/genetics*
;
Membrane Cofactor Protein/genetics*
;
Mice
;
Mice, Knockout
;
Muscles/metabolism*
;
Phosphoric Monoester Hydrolases/metabolism*
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Messenger/metabolism*
;
Receptor, Insulin/metabolism*
;
Tyrosine/genetics*
;
Up-Regulation
3.Study on the secondary metabolites of grasshopper-derived fungi Arthrinium sp. NF2410.
Wei LI ; Jing WEI ; Dao-Ying CHEN ; Mei-Jing WANG ; Yang SUN ; Fang-Wen JIAO ; Rui-Hua JIAO ; Ren-Xiang TAN ; Hui-Ming GE
Chinese Journal of Natural Medicines (English Ed.) 2020;18(12):957-960
Two new 2-carboxymethyl-3-hexyl-maleic anhydride derivatives, arthrianhydride A (1) and B (2), along with three known compounds 3-5, were isolated from the fermentation broth of a grasshopper-associated fungus Arthrinium sp. NF2410. The structures of new compounds 1 and 2 were determined based on the analysis of the HR-ESI-MS and NMR spectroscopic data. Furthermore, compounds 1 and 2 were evaluated on inhibitory activity against the enzyme SHP2 and both of them showed moderate inhibitory activity against SHP2.
Anhydrides/pharmacology*
;
Animals
;
Biological Products/pharmacology*
;
Enzyme Inhibitors/pharmacology*
;
Fungi/chemistry*
;
Grasshoppers/microbiology*
;
Molecular Structure
;
Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors*
;
Secondary Metabolism
4.The role of tyrosine phosphatase Shp2 in spermatogonial differentiation and spermatocyte meiosis.
Yang LI ; Wen-Sheng LIU ; Jia YI ; Shuang-Bo KONG ; Jian-Cheng DING ; Yi-Nan ZHAO ; Ying-Pu TIAN ; Gen-Sheng FENG ; Chao-Jun LI ; Wen LIU ; Hai-Bin WANG ; Zhong-Xian LU
Asian Journal of Andrology 2020;22(1):79-87
The transition from spermatogonia to spermatocytes and the initiation of meiosis are key steps in spermatogenesis and are precisely regulated by a plethora of proteins. However, the underlying molecular mechanism remains largely unknown. Here, we report that Src homology domain tyrosine phosphatase 2 (Shp2; encoded by the protein tyrosine phosphatase, nonreceptor type 11 [Ptpn11] gene) is abundant in spermatogonia but markedly decreases in meiotic spermatocytes. Conditional knockout of Shp2 in spermatogonia in mice using stimulated by retinoic acid gene 8 (Stra8)-cre enhanced spermatogonial differentiation and disturbed the meiotic process. Depletion of Shp2 in spermatogonia caused many meiotic spermatocytes to die; moreover, the surviving spermatocytes reached the leptotene stage early at postnatal day 9 (PN9) and the pachytene stage at PN11-13. In preleptotene spermatocytes, Shp2 deletion disrupted the expression of meiotic genes, such as disrupted meiotic cDNA 1 (Dmc1), DNA repair recombinase rad51 (Rad51), and structural maintenance of chromosome 3 (Smc3), and these deficiencies interrupted spermatocyte meiosis. In GC-1 cells cultured in vitro, Shp2 knockdown suppressed the retinoic acid (RA)-induced phosphorylation of extracellular-regulated protein kinase (Erk) and protein kinase B (Akt/PKB) and the expression of target genes such as synaptonemal complex protein 3 (Sycp3) and Dmc1. Together, these data suggest that Shp2 plays a crucial role in spermatogenesis by governing the transition from spermatogonia to spermatocytes and by mediating meiotic progression through regulating gene transcription, thus providing a potential treatment target for male infertility.
Animals
;
Cell Cycle Proteins/genetics*
;
Cell Line
;
Cell Survival
;
Chondroitin Sulfate Proteoglycans/genetics*
;
Chromosomal Proteins, Non-Histone/genetics*
;
Gene Expression Regulation
;
Gene Knockdown Techniques
;
Infertility, Male
;
Male
;
Meiosis/genetics*
;
Mice
;
Mice, Knockout
;
Mice, Transgenic
;
Phosphate-Binding Proteins/genetics*
;
Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics*
;
Rad51 Recombinase/genetics*
;
Real-Time Polymerase Chain Reaction
;
Spermatocytes/metabolism*
;
Spermatogenesis/genetics*
;
Spermatogonia/metabolism*
5.Protein tyrosine phosphatase 1B inhibitory activities of ursane-type triterpenes from Chinese raspberry, fruits of Rubus chingii.
Xiang-Yu ZHANG ; Wei LI ; Jian WANG ; Ning LI ; Mao-Sheng CHENG ; Kazuo KOIKE
Chinese Journal of Natural Medicines (English Ed.) 2019;17(1):15-21
Protein tyrosine phosphatase 1B (PTP1B) has led to an intense interest in developing its inhibitors as anti-diabetes, anti-obesity and anti-cancer agents. The fruits of Rubus chingii (Chinese raspberry) were used as a kind of dietary traditional Chinese medicine. The methanolic extract of R. chingii fruits exhibited significant PTP1B inhibitory activity. Further bioactivity-guided fractionation resulted in the isolation of three PTP1B inhibitory ursane-type triterpenes: ursolic acid (1), 2-oxopomolic acid (2), and 2α, 19α-dihydroxy-3-oxo-urs-12-en-28-oic acid (3). Kinetics analyses revealed that 1 was a non-competitive PTP1B inhibitor, and 2 and 3 were mixed type PTP1B inhibitors. Compounds 1-3 and structurally related triterpenes (4-8) were further analyzed the structure-activity relationship, and were evaluated the inhibitory selectivity against four homologous protein tyrosine phosphatases (TCPTP, VHR, SHP-1 and SHP-2). Molecular docking simulations were also carried out, and the result indicated that 1, 3-acetoxy-urs-12-ene-28-oic acid (5), and pomolic acid-3β-acetate (6) bound at the allosteric site including α3, α6, and α7 helix of PTP1B.
Enzyme Inhibitors
;
chemistry
;
metabolism
;
Fruit
;
chemistry
;
Humans
;
Kinetics
;
Methanol
;
chemistry
;
Molecular Docking Simulation
;
Molecular Structure
;
Plant Extracts
;
chemistry
;
Protein Binding
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1
;
antagonists & inhibitors
;
metabolism
;
Protein Tyrosine Phosphatases
;
antagonists & inhibitors
;
Rubus
;
chemistry
;
Structure-Activity Relationship
;
Triterpenes
;
chemistry
;
metabolism
6.Overexpression of SHP-1 Enhances the Sensitivity of K562 Cells to Imatinib.
Ying-Hua LI ; Xue-Dong LIU ; Xiu-Fen GUO ; Xiao LIU ; Jian-Min LUO ; Zhi-Shang LI ; Yong-Xiao ZHANG
Journal of Experimental Hematology 2016;24(1):46-51
OBJECTIVETo explore the effect of overexpression of SH2-containing tyrosine phosphatase 1 (SHP-1) on sensitivity of chronic myelogenous 1eukemia (CML) K562 cell line to imatinib and its related mechamism.
METHODSK562 cells were infected with the lentiviral plasmids containing the specified retroviral vector (pEX-SHP-1-puro-Lv105) or the mock vector (pEX-EGFP-puro-Lv105). The expression of SHP-1 in K562 cells treated with 0.2 µmol/L imatinib (IM) for 72 h was determined by Western blot. After transfection the CCK-8 assay was used to determine the proliferation of the tramfected K562 cells (K562(SHP-1) and K562(EGFP) cells) at 72 h after exposure to different doses of IM, the half inhibitary concentration (IC50) was calculated. The mechanisms of the overexpression effects of SHP-1 and IM on the proliferation in K562 cells was investigated, the BCR-ABL1 activity and the level of tyrosine phosphorylation of CrkL (pCrkL) was measured by flow cytometry; the Western blot was used to detect the expression and activity of these molecules controlling cell growth, including MAPK, AKT, STAT5 and JAK2.
RESULTSAfter exposure of K562 cells to 0.08 µmol/L IM for 72 h, there was no significant change of SHP-1 expression in K562 cells. After exposure to 0.2 µmol/L of IM for 72 h, the inhibitory rate of K562(SHP-1) group was higher than that of K562(EGFP) group (P < 0.05), indicating that overexpression of SHP-1 in K562 cells could enhance the proliferation inhtibition effect of IM on K562 cells. The IC50 of IM in K562(SHP-1) cells was the lower as compared with that of K562(EGFP) cells (P < 0.05) after exposure to different concentrations of IM for 72 h. The slope of K562(SHP-1) cells was the largest ranging 0.02 - 0.16 µmol/L of IM. Overexpression of SHP-1 and IM could inhibit the activity BCR-ABL1, MAPK, AKT, STAT5 and JAK2 signaling pathways in the K562 cell line and displayed a synergistic effect.
CONCLUSIONSHP-1 inhibits BCR-ABL1, MAPK, AKT, STAT5 and JAK2 signaling pathways in K562 cells, the overexpression of SHP-1 can enhance the sensitivity of K562 cells to IM.
Cell Proliferation ; Drug Resistance, Neoplasm ; Genetic Vectors ; Humans ; Imatinib Mesylate ; pharmacology ; K562 Cells ; drug effects ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; genetics ; metabolism ; Signal Transduction ; Transfection
7.Conditional Knockout of Src Homology 2 Domain-containing Protein Tyrosine Phosphatase-2 in Myeloid Cells Attenuates Renal Fibrosis after Unilateral Ureter Obstruction.
Jing-Fei TENG ; Kai WANG ; Yao LI ; Fa-Jun QU ; Qing YUAN ; Xin-Gang CUI ; Quan-Xing WANG ; Dan-Feng XU
Chinese Medical Journal 2015;128(9):1196-1201
BACKGROUNDSrc homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) is a kind of intracellular protein tyrosine phosphatase. Studies have revealed its roles in various disease, however, whether SHP-2 involves in renal fibrosis remains unclear. The aim of this study was to explore the roles of myeloid cells SHP-2 in renal interstitial fibrosis.
METHODSMyeloid cells SHP-2 gene was conditionally knocked-out (CKO) in mice using loxP-Cre system, and renal interstitial fibrosis was induced by unilateral ureter obstruction (UUO). The total collagen deposition in the renal interstitium was assessed using picrosirius red stain. F4/80 immunostaing was used to evaluate macrophage infiltration in renal tubular interstitium. Quantitative real-time polymerase chain reaction and enzyme linked immunosorbent assay were used to analyze the production of cytokines in the kidney. Transferase-mediated dUTP nick-end labeling stain was used to assess the apoptotic renal tubular epithelial cells.
RESULTSSrc homology 2 domain-containing protein tyrosine phosphatase-2 gene CKO in myeloid cells significantly reduced collagen deposition in the renal interstitium after UUO. Macrophage infiltration was evidently decreased in renal tubular interstitium of SHP-2 CKO mice. Meanwhile, the production of pro-inflammatory cytokines was significantly suppressed in SHP-2 CKO mice. However, no significant difference was observed in the number of apoptotic renal tubular epithelial cells between wild-type and SHP-2 CKO mice.
CONCLUSIONSOur observations suggested that SHP-2 in myeloid cells plays a pivotal role in the pathogenesis of renal fibrosis, and that silencing of SHP-2 gene in myeloid cells may protect renal from inflammatory damage and prevent renal fibrosis after renal injury.
Animals ; Enzyme-Linked Immunosorbent Assay ; Female ; Fibrosis ; enzymology ; pathology ; Immunohistochemistry ; Kidney Diseases ; enzymology ; pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myeloid Cells ; metabolism ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; genetics ; metabolism ; Ureteral Obstruction ; enzymology ; pathology
8.The effects of compound CX09040 on the inhibition of PTP1B and protection of pancreatic β cells.
Ran-qi TANG ; Xiao-lin ZHANG ; Jin-ying TIAN ; Si-ming KONG ; Ying ZHOU ; Pei ZHANG ; Hong-kun YANG ; Song WU ; Ying ZHANG ; Fei YE
Acta Pharmaceutica Sinica 2015;50(6):682-689
To investigate the effects of 2-(4-methoxycarbonyl-2-tetradecyloxyphenyl)carbamoylbenzoic acid (CX09040) on protecting pancreatic β cells, the β cell dysfunction model mice were induced by injection of alloxan into the caudal vein of ICR mice, and were treated with compound CX09040. Liraglutide was used as the positive control drug. The amount and the size of islets observed in pathological sections were calculated to evaluate the β cell mass; the glucose stimulated insulin secretion (GSIS) test was applied to estimate the β cell secretary function; the oral glucose tolerance test (OGTT) was taken to observe the glucose metabolism in mice; the expressions of protein in pancreas were detected by Western blotting. The effects on the target protein tyrosine phosphatase 1B (PTP1B) were assessed by the PTP1B activities of both recombinant protein and the intracellular enzyme, and by the PTP1B expression in the pancreas of mice, separately. As the results, with the treatment of CX09040 in alloxan-induced β cell dysfunction mice, the islet amount (P<0.05) and size (P<0.05) increased significantly, the changes of serum insulin in GSIS (P<0.01) and the values of acute insulin response (AIR, P<0.01) were enhanced, compared to those in model group; the impaired glucose tolerance was also ameliorated by CX09040 with the decrease of the values of area under curve (AUC, P<0.01). The activation of the signaling pathways related to β cell proliferation was enhanced by increasing the levels of p-Akt/Akt (P<0.01), p-FoxO1/FoxOl (P<0.001) and PDX-1 (P<0.01). The effects of CX09040 on PTP1B were observed by inhibiting the recombinant hPTP1B activity with IC50 value of 2.78x 10(-7) mol.L-1, reducing the intracellular PTP1B activity of 72.8% (P<0.001), suppressing the PTP1B expression (P<0.001) and up-regulating p-IRβ/IRβ (P<0.01) in pancreas of the β cell dysfunction mice, separately. In conclusion, compound CX09040 showed significant protection effects against the dysfunction of β cell of mice by enlarging the pancreatic β cell mass and increasing the glucose-induced insulin secretion; its major mechanism may be the inhibition on target PTP1B and the succedent up-regulation of β cell proliferation.
Alloxan
;
Animals
;
Benzoates
;
pharmacology
;
Biological Assay
;
Disease Models, Animal
;
Glucose
;
metabolism
;
Glucose Tolerance Test
;
Insulin
;
secretion
;
Insulin Resistance
;
Insulin-Secreting Cells
;
drug effects
;
Liraglutide
;
pharmacology
;
Mice
;
Mice, Inbred ICR
;
Molecular Weight
;
Pancreas
;
drug effects
;
enzymology
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1
;
antagonists & inhibitors
;
Signal Transduction
9.Expression and Significance of PTPL1 in Hematological Malignancies.
Wen-Ming WANG ; Jing WANG ; Hong-Mei JING
Journal of Experimental Hematology 2014;22(6):1744-1747
PTPL1 is a protein with a predicted MW of 270 kD, and plays a major role in many cellular functions, including cell survival, proliferation, differentiation and motility. Evidence has demonstrated that PTPL1 is associated with tumor. Although many conflicting results suggested that PTPL1 has two contradictory effects (supressing or promoting ) on tumor, the real effect depends on the involved substrate and the cellular context. Expression of PTPL1 is low in lymphoma, while it is high in myeloid leukemia. PTPL1 has been regarded as a tumor suppressor in lymphoma, the methylation of PTPL1 promoter leads to gene expression reduced or disappeared, playing a lymphoma tumor suppressor role. This review focuses on PTPL1 domain and its interacting proteins, the relationship between PTPL1 and hematological malignancies.
Cell Movement
;
Cell Survival
;
Genes, Tumor Suppressor
;
Hematologic Neoplasms
;
genetics
;
metabolism
;
pathology
;
Humans
;
Protein Tyrosine Phosphatase, Non-Receptor Type 13
;
genetics
;
metabolism
10.Effect of 5-aza-CdR demethylation on expression of SHP-1 and C-kit genes in leukemia HL-60 cells.
Zhen MENG ; Ying-Hua LI ; Dong-Mei WANG ; Jian-Min LUO
Journal of Experimental Hematology 2014;22(6):1572-1576
This study was aimed to investigate the expression level of SHP-1 and C-kit genes in acute leukemia HL-60 cells and effect of 5-aza-CdR demethylation on expression of SHP-1 and C-kit genes. RT-PCR was used to detect the mRNA expression level of SHP-1 and C-kit mRNA in HL-60 cells of the drug-treated group and control group.The methylation specific PCR (MSP) was applied to measure the methylation status of SHP-1 and C-kit genes in HL-60 cells.The results showed that after being treated with 5-aza-CdR, the recovery of SHP-1 gene expression was observed in HL-60 cells in which SHP-1 mRNA originally was not expressed. Meanwhile, the high expression level of C-kit mRNA in HL-60 cells was decreased. When HL-60 cells were treated with 0, 0.5, 1.0, 2.0 µmol/L 5-aza-CdR, the demethylation effect was enhanced, the expression of SHP-1 mRNA displayed an ascending tendency, and the expression of C-kit mRNA showed an descending tendency in dose-dependent manner (P < 0.05) . It is concluded that the absence of SHP-1 mRNA expression in HL-60 cells and recovery of expression after treatment with 5-aza-CdR suggest that the hypermethylation of SHP-1 gene relates with pathogenesis of leukemia, and the abnormal increase of C-kit mRNA expression maybe exist in formation of leukemia. The effect of 5-aza-CdR on expression of SHP-1 and C-kit shows dose-dependency, the higher the 5-aza-CdR concentration, the higher the SHP-1 expression and the lower the C-kit expression, moreover, the effect of 5-aza-CdR shows time-dependency in specific concentration.The SHP-1 mRNA expression negatively correlates with C-kit mRNA expression, suggesting that the decrease or absence of SHP-1 expression in leukemia cells weakens the negative regulation on C-kit signaling pathway, thus plays a role in the formation of leukemia.
Azacitidine
;
pharmacology
;
DNA Methylation
;
drug effects
;
HL-60 Cells
;
Humans
;
Leukemia
;
genetics
;
metabolism
;
Protein Tyrosine Phosphatase, Non-Receptor Type 6
;
genetics
;
Proto-Oncogene Proteins c-kit
;
genetics
;
RNA, Messenger

Result Analysis
Print
Save
E-mail