1.Study on the secondary metabolites of grasshopper-derived fungi Arthrinium sp. NF2410.
Wei LI ; Jing WEI ; Dao-Ying CHEN ; Mei-Jing WANG ; Yang SUN ; Fang-Wen JIAO ; Rui-Hua JIAO ; Ren-Xiang TAN ; Hui-Ming GE
Chinese Journal of Natural Medicines (English Ed.) 2020;18(12):957-960
		                        		
		                        			
		                        			Two new 2-carboxymethyl-3-hexyl-maleic anhydride derivatives, arthrianhydride A (1) and B (2), along with three known compounds 3-5, were isolated from the fermentation broth of a grasshopper-associated fungus Arthrinium sp. NF2410. The structures of new compounds 1 and 2 were determined based on the analysis of the HR-ESI-MS and NMR spectroscopic data. Furthermore, compounds 1 and 2 were evaluated on inhibitory activity against the enzyme SHP2 and both of them showed moderate inhibitory activity against SHP2.
		                        		
		                        		
		                        		
		                        			Anhydrides/pharmacology*
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Biological Products/pharmacology*
		                        			;
		                        		
		                        			Enzyme Inhibitors/pharmacology*
		                        			;
		                        		
		                        			Fungi/chemistry*
		                        			;
		                        		
		                        			Grasshoppers/microbiology*
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors*
		                        			;
		                        		
		                        			Secondary Metabolism
		                        			
		                        		
		                        	
2.Flavonoids with PTP1B inhibition from Broussonetia papyrifera.
Yang LOU ; Shi-Yun SU ; Ya-Nan LI ; Chun LEI ; Jing-Ya LI ; Ai-Jun HOU
China Journal of Chinese Materia Medica 2019;44(1):88-94
		                        		
		                        			
		                        			Eleven flavonoids were isolated from the twigs of Broussonetia papyrifera by column chromatography over silica gel,ODS,MCI gel,and Sephadex LH-20,as well as RP-HPLC.Their structures were identified by spectroscopic methods including NMR,MS,UV,and IR as broupapyrin A(1),5,7,3',4'-tetrahydroxy-3-methoxy-8-geranylflavone(2),8-prenylquercetin-3-methyl ether(3),broussonol D(4),broussoflavonol B(5),uralenol(6),broussonol E(7),8-(1,1-dimethylallyl)-5'-(3-methylbut-2-enyl)-3',4',5,7-tetrahydroxyflanvonol(8),broussoflavonol E(9),4,2',4'-trihydroxychalcone(10),and butein(11).Compound 1 is a new isoprenylated flavonol.Compounds 3,6,10,and 11 were obtained from the genus Broussonetia for the first time,and 4 and 7 were firstly discovered in B.papyrifera.Compounds 1-5 and 7-9 showed significant inhibitory effects on PTP1 B with IC50 values ranging from(0.83±0.30) to(4.66±0.83) μmol·L-1.
		                        		
		                        		
		                        		
		                        			Broussonetia
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Chromatography, High Pressure Liquid
		                        			;
		                        		
		                        			Flavonoids
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Magnetic Resonance Spectroscopy
		                        			;
		                        		
		                        			Phytochemicals
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Protein Tyrosine Phosphatase, Non-Receptor Type 1
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			
		                        		
		                        	
3.Protein tyrosine phosphatase 1B inhibitory activities of ursane-type triterpenes from Chinese raspberry, fruits of Rubus chingii.
Xiang-Yu ZHANG ; Wei LI ; Jian WANG ; Ning LI ; Mao-Sheng CHENG ; Kazuo KOIKE
Chinese Journal of Natural Medicines (English Ed.) 2019;17(1):15-21
		                        		
		                        			
		                        			Protein tyrosine phosphatase 1B (PTP1B) has led to an intense interest in developing its inhibitors as anti-diabetes, anti-obesity and anti-cancer agents. The fruits of Rubus chingii (Chinese raspberry) were used as a kind of dietary traditional Chinese medicine. The methanolic extract of R. chingii fruits exhibited significant PTP1B inhibitory activity. Further bioactivity-guided fractionation resulted in the isolation of three PTP1B inhibitory ursane-type triterpenes: ursolic acid (1), 2-oxopomolic acid (2), and 2α, 19α-dihydroxy-3-oxo-urs-12-en-28-oic acid (3). Kinetics analyses revealed that 1 was a non-competitive PTP1B inhibitor, and 2 and 3 were mixed type PTP1B inhibitors. Compounds 1-3 and structurally related triterpenes (4-8) were further analyzed the structure-activity relationship, and were evaluated the inhibitory selectivity against four homologous protein tyrosine phosphatases (TCPTP, VHR, SHP-1 and SHP-2). Molecular docking simulations were also carried out, and the result indicated that 1, 3-acetoxy-urs-12-ene-28-oic acid (5), and pomolic acid-3β-acetate (6) bound at the allosteric site including α3, α6, and α7 helix of PTP1B.
		                        		
		                        		
		                        		
		                        			Enzyme Inhibitors
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Fruit
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Kinetics
		                        			;
		                        		
		                        			Methanol
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Molecular Docking Simulation
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Protein Binding
		                        			;
		                        		
		                        			Protein Tyrosine Phosphatase, Non-Receptor Type 1
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Protein Tyrosine Phosphatases
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			Rubus
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Structure-Activity Relationship
		                        			;
		                        		
		                        			Triterpenes
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
4.The effects of compound CX09040 on the inhibition of PTP1B and protection of pancreatic β cells.
Ran-qi TANG ; Xiao-lin ZHANG ; Jin-ying TIAN ; Si-ming KONG ; Ying ZHOU ; Pei ZHANG ; Hong-kun YANG ; Song WU ; Ying ZHANG ; Fei YE
Acta Pharmaceutica Sinica 2015;50(6):682-689
		                        		
		                        			
		                        			To investigate the effects of 2-(4-methoxycarbonyl-2-tetradecyloxyphenyl)carbamoylbenzoic acid (CX09040) on protecting pancreatic β cells, the β cell dysfunction model mice were induced by injection of alloxan into the caudal vein of ICR mice, and were treated with compound CX09040. Liraglutide was used as the positive control drug. The amount and the size of islets observed in pathological sections were calculated to evaluate the β cell mass; the glucose stimulated insulin secretion (GSIS) test was applied to estimate the β cell secretary function; the oral glucose tolerance test (OGTT) was taken to observe the glucose metabolism in mice; the expressions of protein in pancreas were detected by Western blotting. The effects on the target protein tyrosine phosphatase 1B (PTP1B) were assessed by the PTP1B activities of both recombinant protein and the intracellular enzyme, and by the PTP1B expression in the pancreas of mice, separately. As the results, with the treatment of CX09040 in alloxan-induced β cell dysfunction mice, the islet amount (P<0.05) and size (P<0.05) increased significantly, the changes of serum insulin in GSIS (P<0.01) and the values of acute insulin response (AIR, P<0.01) were enhanced, compared to those in model group; the impaired glucose tolerance was also ameliorated by CX09040 with the decrease of the values of area under curve (AUC, P<0.01). The activation of the signaling pathways related to β cell proliferation was enhanced by increasing the levels of p-Akt/Akt (P<0.01), p-FoxO1/FoxOl (P<0.001) and PDX-1 (P<0.01). The effects of CX09040 on PTP1B were observed by inhibiting the recombinant hPTP1B activity with IC50 value of 2.78x 10(-7) mol.L-1, reducing the intracellular PTP1B activity of 72.8% (P<0.001), suppressing the PTP1B expression (P<0.001) and up-regulating p-IRβ/IRβ (P<0.01) in pancreas of the β cell dysfunction mice, separately. In conclusion, compound CX09040 showed significant protection effects against the dysfunction of β cell of mice by enlarging the pancreatic β cell mass and increasing the glucose-induced insulin secretion; its major mechanism may be the inhibition on target PTP1B and the succedent up-regulation of β cell proliferation.
		                        		
		                        		
		                        		
		                        			Alloxan
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Benzoates
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Biological Assay
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Glucose
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Glucose Tolerance Test
		                        			;
		                        		
		                        			Insulin
		                        			;
		                        		
		                        			secretion
		                        			;
		                        		
		                        			Insulin Resistance
		                        			;
		                        		
		                        			Insulin-Secreting Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Liraglutide
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred ICR
		                        			;
		                        		
		                        			Molecular Weight
		                        			;
		                        		
		                        			Pancreas
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			Protein Tyrosine Phosphatase, Non-Receptor Type 1
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
5.Chromium-containing traditional Chinese medicine, Tianmai Xiaoke Tablet improves blood glucose through activating insulin-signaling pathway and inhibiting PTP1B and PCK2 in diabetic rats.
Qian ZHANG ; Xin-Hua XIAO ; Ming LI ; Wen-Hui LI ; Miao YU ; Hua-Bing ZHANG ; Fan PING ; Zhi-Xin WANG ; Jia ZHENG
Journal of Integrative Medicine 2014;12(3):162-170
OBJECTIVEChromium is an essential mineral that is thought to be necessary for normal glucose homeostasis. Numerous studies give evidence that chromium picolinate can modulate blood glucose and insulin resistance. The main ingredient of Tianmai Xiaoke (TMXK) Tablet is chromium picolinate. In China, TMXK Tablet is used to treat type 2 diabetes. This study investigated the effect of TMXK on glucose metabolism in diabetic rats to explore possible underlying molecular mechanisms for its action.
METHODSDiabetes was induced in rats by feeding a high-fat diet and subcutaneously injection with a single dose of streptozotocin (50 mg/kg, tail vein). One week after streptozotocin-injection, model rats were divided into diabetic group, low dose of TMXK group and high dose of TMXK group. Eight normal rats were used as normal control. After 8 weeks of treatment, skeletal muscle was obtained and was analyzed using Roche NimbleGen mRNA array and quantitative polymerase chain reaction (qPCR). Fasting blood glucose, oral glucose tolerance test and homeostasis model assessment of insulin resistance (HOMA-IR) index were also measured.
RESULTSThe authors found that the administration of TMXK Tablet can reduce the fasting blood glucose and fasting insulin level and HOMA-IR index. The authors also found that 2 223 genes from skeletal muscle of the high-dose TMXK group had significant changes in expression (1 752 increased, 471 decreased). Based on Kyoto encyclopedia of genes and genomes pathway analysis, the most three significant pathways were "insulin signaling pathway", "glycolysis/gluconeogenesis" and "citrate cycle (TCA)". qPCR showed that relative levels of forkhead box O3 (FoxO3), phosphoenolpyruvate carboxykinase 2 (Pck2), and protein tyrosine phosphatase 1B (Ptp1b) were significantly decreased in the high-dose TMXK group, while v-akt murine thymoma viral oncogene homolog 1 (Akt1) and insulin receptor substrate 2 (Irs2) were increased.
CONCLUSIONOur data show that TMXK Tablet reduces fasting glucose level and improves insulin resistance in diabetic rats. The mechanism may be linked to the inactivation of PTP1B and PCK enzymes, or through intracellular pathways, such as the insulin signaling pathway.
Animals ; Blood Glucose ; analysis ; Chromium ; administration & dosage ; Diabetes Mellitus, Type 2 ; drug therapy ; metabolism ; Insulin ; physiology ; Insulin Resistance ; Male ; Medicine, Chinese Traditional ; Phosphoenolpyruvate Carboxykinase (ATP) ; antagonists & inhibitors ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 ; antagonists & inhibitors ; Rats ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Signal Transduction ; drug effects ; Tablets
6.SAR of benzoyl sulfathiazole derivatives as PTP1B inhibitors.
Wen-Wen YIN ; Zheng CHEN ; Yan-Bo TANG ; Fei YE ; Jin-Ying TIAN ; Zhi-Yan XIAO
Acta Pharmaceutica Sinica 2014;49(5):632-638
		                        		
		                        			
		                        			Protein tyrosine phosphatase (PTP) 1B is a potential target for the treatment of diabetes and obesity. We have previously identified the benzoyl sulfathiazole derivative II as a non-competitive PTP1B inhibitor with in vivo insulin sensitizing effects. Preliminary SAR study on this compound series has been carried out herein, and thirteen new compounds have been designed and synthesized. Among them, compound 10 exhibited potent inhibition against human recombinant PTP1B with the IC50 value of 3.97 micromol x L(-1), and is comparable to that of compound II.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Protein Tyrosine Phosphatase, Non-Receptor Type 1
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			Structure-Activity Relationship
		                        			;
		                        		
		                        			Sulfathiazoles
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
8.Investigation of a compound, compatibility of Rhodiola crenulata, Cordyceps militaris, and Rheum palmatum, on metabolic syndrome treatment I--improving insulin resistance.
Juan LI ; Ling CHEN ; Xiaolin ZHANG ; Jianyang FU ; Jing HAN ; Jinying TIAN ; Peicheng ZHANG ; Fei YE
China Journal of Chinese Materia Medica 2012;37(11):1614-1619
		                        		
		                        			
		                        			To investigate the effects of a compound (FF16), compatibility of Rhodiola crenulata, Cordyceps militaris, and Rheum palmatum, on insulin resistance. The results showed that FF16 significantly improved the insulin sensitivity through decreasing AUC values in insulin tolerance tests by 24.1%, 38.5%; reducing the levels of serum insulin by 46.0%, 30.4%, of HOMA-IR by 52.4%, 81.2%; and reversing the lower GIR values by 119.3%, 202.4% in IRF mice and KKAy mice, respectively. In addition, in KKAy mice, the value of whole body insulin sensitivity index (ISWBI) was enhanced by 1.0 times, the abilities of the insulin-induced glucose uptake in liver, adipose and skeletal muscle were enhanced by 1.5, 2.8 and 2.2 times, respectively, in FF16-treated mice comparing with those in model mice. The recombinant human protein tyrosine phosphatase 1B (PTP1B) activity was inhibited by FF16 in vitro with the IC50 value of 0.225 mg x L(-1). The increased PTP1B expression in the liver was also reversed by 45.8% with the administration of FF16 in IRF mice. In conclusion, FF16 could improve insulin resistance by inhibiting the activity of PTP1B.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Biological Transport
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cordyceps
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Glucose
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Insulin
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Insulin Resistance
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Metabolic Syndrome
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Protein Tyrosine Phosphatase, Non-Receptor Type 1
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			Rheum
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Rhodiola
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
9.Design, synthesis and evaluation of malonic acid-based PTP1B inhibitors.
Xin DU ; Shu-En ZHANG ; Jun-Zheng LIU ; Fei-Lin NIE ; Fei YE ; Jin-Ying TIAN ; Zhi-Yan XIAO
Acta Pharmaceutica Sinica 2012;47(3):367-373
		                        		
		                        			
		                        			Protein tyrosine phosphatase (PTP) 1B is a potential target for the treatment of diabetes and obesity. Phosphotyrosine (pTyr) is the substrate for PTP1B dephosphorylation. Malonic acid moiety was used herein as a mimic of the phosphate group in pTyr, and novel malonic acid derivatives 1-7 were designed, synthesized and evaluated as PTP1B inhibitors. Results from enzymatic assays indicated that compounds 3 and 4 exhibited potent inhibition against human recombinant PTP1B with IC50 values of 7.66 and 1.88 micromol x L(-1), respectively.
		                        		
		                        		
		                        		
		                        			Drug Design
		                        			;
		                        		
		                        			Enzyme Inhibitors
		                        			;
		                        		
		                        			chemical synthesis
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inhibitory Concentration 50
		                        			;
		                        		
		                        			Malonates
		                        			;
		                        		
		                        			chemical synthesis
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Protein Tyrosine Phosphatase, Non-Receptor Type 1
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Structure-Activity Relationship
		                        			
		                        		
		                        	
10.High-throughput screening of human soluble protein tyrosine phosphatase 1B inhibitors.
Xiao-bin PANG ; Xin-mei XIE ; Shou-bao WANG ; Guan-hua DU
Acta Pharmaceutica Sinica 2011;46(9):1058-1064
		                        		
		                        			
		                        			To screen potential human soluble protein tyrosine phosphatase 1B (PTP1B) inhibitors, a high-throughput screening (HTS) model in 384-well microplate with total volume of 50 microL was established. Recombinant PTP1B was cloned and expressed in E. coli. with its specific substrate 4-nitrophenyl phosphate disodium salt hexahydrate (PNPP). The HTS model was based on enzyme reaction rate with enhanced sensitivity and specificity (Z' = 0.78). A total of 24,240 samples were screened, among them 80 samples with inhibition greater than 70% were selected for further rescreening. Finally, six compounds with high inhibitory activity were identified, whose IC50 values were 21.58, 18.39, 15.37, 11.92, 37.27, and 36.61 microg x mL(-1), separately. The results indicated that the method was stable, sensitive, reproducible and also suitable for high-throughput screening.
		                        		
		                        		
		                        		
		                        			Drug Evaluation, Preclinical
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Enzyme Inhibitors
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Escherichia coli
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			High-Throughput Screening Assays
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inhibitory Concentration 50
		                        			;
		                        		
		                        			Protein Tyrosine Phosphatase, Non-Receptor Type 1
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Sensitivity and Specificity
		                        			;
		                        		
		                        			Vanadates
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail